
数据中心整合:一个经理的资源清单
近年来,云计算市场得以迅速增长,而各种数据中心服务的新需求也在持续增长。云提供商和数据中心合作伙伴正在日以继夜地工作,使他们的环境尽可能高效。这是为什么?是为了最大限度地提高他们的底线,以保持竞争力。
在目前竞争激烈的数据中心和云计算市场中,市场领军企业在运行最优化和成本效益的同时,还要提供优越的服务。为了实现这一目标,企业还要考虑一些事情。首先,在市场上领先并不总是意味着增加更多的设备。智能数据中心和云服务提供商要学会充分利用自己所拥有的资源。另外,在新的数据中心效率概念中,有人提出一些新的问题:有没有推出一种提高功率密度的新技术?数据中心的投资回报率是否有助于降低长期管理成本?有没有一种新的平台,让企业付出更少,获得更多?
在许多情况下,围绕整合数据中心资源,可以创造出更好的效率和更具竞争力的数据中心。有了这样的想法,管理者应该了解涉及数据中心整合的三个关键领域。它们是硬件、软件和用户。
1、硬件
有这么多的新类型工具,人们可以用它来整合服务资源和物理数据中心设备。其解决方案中,包括先进的软件定义技术,以及有助于创建更灵活的数据中心架构的虚拟化。当涉及到硬件和整合时,人们通常会以下几种选择:
网络,路由器,交换机:这些已经正式虚拟化整个网络层。如果企业选择采用,他们可以在一个完全的商品网络架构上运行,并仍然提供企业级功能。例如,积云网络都有自己的Linux发行版,积云Linux希望在行业标准的网络硬件上运行。基本上,它是一个纯软件的解决方案,提供了一个现代数据中心网络设计和运营的标准的操作系统,这是Linux最大的灵活性。当网络组件工作时,寻找可以整合网络功能的虚拟服务,并减少对设备的更多需求。
存储和数据:就像网络,人们现在可以创建和控制自己存储架构的能力。软件定义存储不仅让虚拟化存储控制器层技术上更进了一步,而且这种逻辑组件允许汇总孤立的存储资源,并通过管理层进行控制。人们再也不用担心丢失的存储资源,因为现在可以通过智能存储管理平台控制所有的数据点。此外,新类型的应用程序级策略让人产最大限度地利用存储资源,如闪存,可以通过单点应用到特定的存储库。
刀片服务器:在实际计算层中,数据中心架构师有相当多的选择。融合使人们能够创建一个强大的环境,将数据中心的几个功能耦合到一个基于节点的架构中。即使传统的机架安装服务器现在有了更好的资源控制机制和提高密度。不过,新型刀片架构的允许直接背板结构整合和更多的吞吐量。此外,硬件政策允许人们动态重新配置资源。这使得新的用户采取同一刀片机箱上全新的硬件策略。创建一个“全天候式”的数据中心模型可以让人们更少地添加设备,同时还支持用户的多样化。
管理机架:制冷,电力,以及气流都是数据中心重要的考虑因素,当人们审视整个数据中心整合的情况时,采用了多大的电力容量?数据中心有哪些热点?服务器运行的效率是多少?是否使用了一些周围的空气流动管理的最新机制?因此,创建一个理想的数据中心和机架架构,可以帮助控制更多的设备,这还有很长的路要走。请记住,功率密度和工作负载性能将直接影响到数据中心的环境变量及其健康状态。
2、软件
数据中心设施的软件部分是至关重要的。在这种情况下,人们谈论其管理和可见性。那么能看到所有的资源吗?在优化工作负载时做什么?因为业务现在直接关系到其能力,软件比以往任何时候都更重要,现代数据中心的硬件和软件层可以提高其可视性。
具有良好的管理控制,跨越虚拟和物理组件可以让人们控制资源,优化整体性能。在使用各种管理工具时,要考虑以下因素:
如何监控从芯片到冷却系统的一切,?
是否可以看到虚拟工作负载以及其如何分布?
如何了解硬件资源的利用率?
如何控制负载均衡动态?
DCIM解决方案如何集成到虚拟系统和云计算?
是否可以主动决定资源的利用率?
另外,还有了解数据中心知识,引导DCIM产品市场,以及帮助选择,部署,以及操作数据中心基础设施管理软件等情况。
3、用户
2007年,苹果公司推出了第一代iPhone,在短短八年间的过程中,人们已经看到了采纳云计算,IT消费化,以及物联网对其产品和技术所带来的巨大变化。数据中心在幕后支持所有这些新的数据和这么多的新用户的应用。这些用户请求的应用程序,服务,以及各种其他的关键功能,使人们能够富有成效地生产和生活。然而,这一切的核心都是数据中心的作用。
数据中心整合绝对不能让用户体验产生负面影响。相反;一个好的整合方案实际上应该提高整体性能以及连接用户。新技术使用户能够动态地控制和负载平衡,用户获取他们的资源和数据。新的广域网控制机制可以允许来自不同点的交付或丰富的资源。对于最终用户来说,整个过程是完全透明的。对于数据中心来说,利用云计算,收敛和其他优化工具,可能让人们有更少的资源需求。
对涉及到用户和业务流程的数据中心运营进行严格控制,这也意味着数据中心管理者必须着眼于新的技术和解决方案,以巩固自己的数据中心,同时还支持下一代数据中心的使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04