
最近几年IT都成长在一个大数据的环境下,大家动不动就要分布式,想想就搞大数据。有的网站明明访问量几台普通的服务器就可以搞定,非要弄分布式,挂着云计算的名字,却做着屌丝的事情。
虽然,大环境如此,但是为了沾上这种高大上的气息,也着手看一下这方面的书。
刚刚看完《大数据时代》这本书,感觉收获也蛮多的。习惯性的整理了一下书籍的思维导图
这本书是国外人写的,但是内容上还比较符合国内目前的环境,毕竟国内的大数据发展起步还是要晚一点的。
就从法律这方面来说,感觉国内的个人隐私方面法律就不怎么看重,因此即便某些软件或者网站侵犯了用户的个人隐私,用户也极少会采取一定的措施。况且很多网站或者软件在不显眼或者让人不在意的地方使用了 声明许可......简直是推卸责任的最佳方案。
就这点来说,书中提倡,不应该采用个人许可这种类似的手段来避免大数据的使用责任,而是应该由使用方来承担责任。
这样,使用数据的人就会在使用过程中,去了解什么地方可能触犯了用户的隐私,什么地方可能会让用户陷入尴尬的困境,从而使用模糊化或者匿名化的手段来避免。
模糊化就是不给出数据的具体内容,只是粗略的描述。
而匿名化就好理解了,就是隐藏掉用户的关键信息。
就目前的互联网公司,也有很多公司根本不注重这种细节,就我特别反感的一点来说:
京东目前应该说是互联网产业很火的一个产品了...由于它的东西很多都是京东自营的,质量上总是感觉比淘宝要有保障。因此,我买东西能在京东上买,就绝对不会去淘宝。但是京东的购物历史,却很是让人尴尬!
比如下面这些标红的地方,是购物的评价区
点击上面的用户名,就直接可以看到这个人的消费历史。当然这个历史记录是可以关闭,不显示的。但是默认上来都是开启的,一般用户也不会在意。但是如果查看某XX斯这种尴尬的产品,查看其用户,就可以发现很多有意思的购物历史。
这里就当做一个吐槽吧!这虽然不是什么大数据,购物历史应该说是简单的历史数据了。但是这也算是泄露了用户的隐私吧。
其次呢,我们目前的这种生活环境,每天会产生大量的数据,这些数据利用好了,可以为我们进行一定的数据可视化,分析或者预测出生活中一些即将发生,我们有意去关注的事情。
因此好坏参半,大数据的使用还要看具体来做什么。
总的来说,其中的商机以及潜在的机会都是非常大的,如何有效的搜集数据,如何有效的利用分析数据才是目前最应该关注的事情。
大体上无非都是这些步骤:
1 数据一般都是某些应用的记录,或者消息
2 有了数据,需要对数据进行有效的采集,存储,查询。
这里就涉及到 一定的技术了,采集需要对业务进行分析,在有效的地方进行记录。存储需要考虑数据的增长量,或者安全性,是否会由于庞大的数据而存不存下,是否会因为某些 故障而漏掉信息,这个时候就要高一些分布式存储之类的了。最后的查询,可能会设计到一些搜索啊,MapReduce之类的。
3 数据已经有了,就要对数据进行分析了。这一块基于某些业务肯定有不同的搜集方法,具体看业务而定吧。
4 数据的用途:既可以采取数据的可视化进行数据的直观展现,也可以利用数据进行一些趋势动向的分析预测,还可以进行某些特定预测的预警等等。
大数据的时代,重要的是数据的搜集,相关的技术,以及如何使用这些数据。
以上的博文,纯属个人的无聊记录与吐槽,设计到某些互联网的公司的部分,也是纯属希望能够做得更好。
正如书中的最后一句话,凡是过去,皆为序曲。
个人理解,过去的历史数据可能就直接丢掉了,但是现在我们应该利用这些数据,去做更有价值的事情。
最近几年IT都成长在一个大数据的环境下,大家动不动就要分布式,想想就搞大数据。有的网站明明访问量几台普通的服务器就可以搞定,非要弄分布式,挂着云计算的名字,却做着屌丝的事情。
虽然,大环境如此,但是为了沾上这种高大上的气息,也着手看一下这方面的书。
刚刚看完《大数据时代》这本书,感觉收获也蛮多的。习惯性的整理了一下书籍的思维导图
这本书是国外人写的,但是内容上还比较符合国内目前的环境,毕竟国内的大数据发展起步还是要晚一点的。
就从法律这方面来说,感觉国内的个人隐私方面法律就不怎么看重,因此即便某些软件或者网站侵犯了用户的个人隐私,用户也极少会采取一定的措施。况且很多网站或者软件在不显眼或者让人不在意的地方使用了 声明许可......简直是推卸责任的最佳方案。
就这点来说,书中提倡,不应该采用个人许可这种类似的手段来避免大数据的使用责任,而是应该由使用方来承担责任。
这样,使用数据的人就会在使用过程中,去了解什么地方可能触犯了用户的隐私,什么地方可能会让用户陷入尴尬的困境,从而使用模糊化或者匿名化的手段来避免。
模糊化就是不给出数据的具体内容,只是粗略的描述。
而匿名化就好理解了,就是隐藏掉用户的关键信息。
就目前的互联网公司,也有很多公司根本不注重这种细节,就我特别反感的一点来说:
京东目前应该说是互联网产业很火的一个产品了...由于它的东西很多都是京东自营的,质量上总是感觉比淘宝要有保障。因此,我买东西能在京东上买,就绝对不会去淘宝。但是京东的购物历史,却很是让人尴尬!
比如下面这些标红的地方,是购物的评价区
点击上面的用户名,就直接可以看到这个人的消费历史。当然这个历史记录是可以关闭,不显示的。但是默认上来都是开启的,一般用户也不会在意。但是如果查看某XX斯这种尴尬的产品,查看其用户,就可以发现很多有意思的购物历史。
这里就当做一个吐槽吧!这虽然不是什么大数据,购物历史应该说是简单的历史数据了。但是这也算是泄露了用户的隐私吧。
其次呢,我们目前的这种生活环境,每天会产生大量的数据,这些数据利用好了,可以为我们进行一定的数据可视化,分析或者预测出生活中一些即将发生,我们有意去关注的事情。
因此好坏参半,大数据的使用还要看具体来做什么。
总的来说,其中的商机以及潜在的机会都是非常大的,如何有效的搜集数据,如何有效的利用分析数据才是目前最应该关注的事情。
大体上无非都是这些步骤:
1 数据一般都是某些应用的记录,或者消息
2 有了数据,需要对数据进行有效的采集,存储,查询。
这里就涉及到 一定的技术了,采集需要对业务进行分析,在有效的地方进行记录。存储需要考虑数据的增长量,或者安全性,是否会由于庞大的数据而存不存下,是否会因为某些 故障而漏掉信息,这个时候就要高一些分布式存储之类的了。最后的查询,可能会设计到一些搜索啊,MapReduce之类的。
3 数据已经有了,就要对数据进行分析了。这一块基于某些业务肯定有不同的搜集方法,具体看业务而定吧。
4 数据的用途:既可以采取数据的可视化进行数据的直观展现,也可以利用数据进行一些趋势动向的分析预测,还可以进行某些特定预测的预警等等。
大数据的时代,重要的是数据的搜集,相关的技术,以及如何使用这些数据。
以上的博文,纯属个人的无聊记录与吐槽,设计到某些互联网的公司的部分,也是纯属希望能够做得更好。
正如书中的最后一句话,凡是过去,皆为序曲。
个人理解,过去的历史数据可能就直接丢掉了,但是现在我们应该利用这些数据,去做更有价值的事情。CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29