
数据定义的挑战
从数据科学的角度看,这次航天仼务的失利是数据定义没有做好,正所谓“失之毫厘,谬以千里”。数据定义是数据收集和分析的基础,看似简单,想要在实践中做好却并不容易。尤其是在大数据系统中(如宇航工程),维护数据定义的正确性和一致性就更具挑战性了。
数据定义有两个要素,一个是关于定义的概念,另一个是关于定义的测度。前者可被称为概念定义,而后者可被称为操作定义。好的数据定义应该同时具有清晰的概念定义和操作定义。火星气候探测者号的悲剧就是操作定义没有在系统中做到一致性而导致的。
而在另一些应用场合,概念定义可能成为问题的症结所在。一家国内著名电商的大数据负责人曾经告诉我,一个让他们非常头疼的问题就是应该如何定义什么是一笔“订单”。从IT人的角度,“订单”的概念似乎应是很简单的,那就是顾客一次付款购买的全部商品。然而实际却远比这个复杂。比如说,有时候下单之后,后台发现某个产品断货,然后征得顾客同意取消了原订单中的这一项产品。这样就有了两种订单的定义,初始订单和真正执行的订单。接着在仓库配送时,一张订单可能会被拆成两次或多次送货。这样一个订单在运营记录中变成了几张单子,在财务那边也造成了多张发票。最后,顾客可能发现自己不喜欢购买的一些产品而要求退货。结果一张订单的实收款往往有别于下单时的金额和配送时的金额。这样以来一笔订单到底该如何定义,一张订单的金额和包含的产品数到底该如何计算,就成了个棘手问题。
重要的是,这一数据定义不仅是个技术问题,而且还有战略层面的意义。从营销和客户关系管理的角度看,订单的定义需要能反映顾客购买次数和(考虑退货后的)实际消费金额。但是从运营管理的角度,订单的定义最好能反映实际配送成本和配送质量(如递送速度,准确率等);因此拆分后的实际配送订单对运营决策更具意义。而在公司高层决策者看来,以上各种的订单概念都有其重要性和对应的管理作用,因此都希望保留。所以对数据部门来说,挑战一下就大了起来。因为不仅要在系统中维护不同的订单定义,而且还要注意及时提醒使用数据的决策者当前看到的数据和分析结果是基于何种订单概念。因为不同部门有自己对数据定义的偏好,在提供数据图表时还要尽量给出个性化的定制。
更多的时候,清晰的概念定义和操作定义都不容易给出。笔者曾经给一家著名的跨国石油公司做过零售方面的咨询,是关于其在全球各个自有加油站的定价优化。要给某个加油站做定价优化,知道其竞争对手是谁应是必不可少的。可是竞争对手到底该怎么定义呢?竞争的概念似乎是不言而喻的,但是不言而喻恰恰正是隐患所在。强调数据科学,就是要消除这些隐患,把概念清晰地表达出来。
从经济学角度,对于竞争对手的严格定义应该是:如果至少有一部分消费者在购买时会考虑在A和B中做出选择,那么B是A的竞争者。但是这一定义却缺乏可操作性。该公司收集了自己加油站每天每时段的销售情况,但只能追踪同城其它加油站的每天定价和广告变化。另外,对于持品牌积分卡的顾客,他们在该公司的消费情况能被完整地追踪,但是他们是否也加过其它品牌的油就不得而知了。
经过一番仔细思考,我们决定采用如下的定义:B加油站是A加油站的竞争者,如果B的营销活动(如价格降低、广告等)对A的销量有负面影响。这一定义符合我们对竞争的一般理解,而且还考虑到了数据收集的可行性,所需的数据都是已经有了的。可是即便有了这个定义,操作起来还是充满了挑战。首先,澘在竞争者的范围该如何定?离A一公里,五公里?还有更远的可能性因为消费者可能会比较居住地附近的加油站和上班地附近的加油站。大数据在这一点上能帮助我们。比如说我们可以把网撒得很大,扩大到一百公里的半径,把潜在的竞争者都查一遍。
可是下一个问题又来了:我们怎么判断B的营销活动(如价格变化,广告等等)对A的销量有影响呢?和有些流行大数据读物所宣称的不同,我们发现单纯看相关性并不可行。
举个例子,由于原油价格上升,B提了价,而消费者也总体减少了开车的里程。这样从数据上我们看到的是B的价格提升往往伴随着A的销量减少,这似乎意味着B不是A的竞争者,而事实则可能正好相反。
最后我们的解决方案是放弃了寻找A的具体竞争对手的想法,而是把所有A以外的加油站的营销活动汇总起来做成一个A的市场环境指数,再基于这一指数做出A的定价优化。其中的细节十分复杂,篇幅所限,就不赘述了。
以上的这些例子让我们看到数据定义的问题看似简单,也因此往往被忽视,但是这其中的挑战不可不察。所谓“千里之行,始于足下”,“好的开端是成功的一半”,这些用来描述数据定义的重要性决不为过。要用好大数据,我们必须对数据定义慎而慎之。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01