京公网安备 11010802034615号
经营许可证编号:京B2-20210330
全球电信行业面临日益严峻的收益挑战,市场趋向饱和、ARPU值持续走低、市场遭遇OTT侵袭等。另一方面,信息数据流量的快速增长、4G时代带来的更多创新应用也为运营商带来机会。作为一个“信息石油”大集成者,全球电信运营商已开始利用大数据技术实现转型,并着手打造信息生态。
冬日来临
开源节流是运营商的发展要义,特别是在如今的紧日子下。
5月初,工信部联合发改委发出通告,包括固定和移动的本地、长途、漫游语音、短消息、数据业务等,所有电信业务资费都实行市场调节价。
6月起,电信业“营改增”试点正式开启,从之前统一税率3%,提升至基础电信服务税率11%、增值电信服务税率6%。三大运营商均发布公告称公司财务将受到较大负面影响:中国移动今年收入下滑9%,利润下降超过200亿元(人民币,下同);中国电信经营利润减少30%,约52亿元;中国联通未公布具体数额,但净利润大幅下降是事实。
7月初,国资委通知三大电信运营商,要求三年内连续大幅度减少营销费用达20%。根据测算,仅中国移动3年里就需减少营销费用240亿元,而三大运营商3年总计需要减少营销费用400多亿元。
根据三大运营商2013年财报,中国电信2013年净利润175亿元,中国联通2013年净利润34.4亿元,中国移动2013年净利润1217亿元。
政策的一步步收紧,促使运营商不得不进一步加大力度降低成本、提高效率,并拓展新业务,也正是这样的背景加速了运营商采用大数据的步伐。
目前,运营商利用已有的信息资本,主要从两个方向发力大数据,一是改善企业运营效率,二是拓展新形态业务。
改善运营效率
降低运营成本,同时维持现有客户收益是运营商改革的主要目的。现在在大数据等新技术的推动下,运营商优化管理基础设施建设的系统资源,以及更深刻的了解用户并维持关系有了新的途径。
据工业技术研究产业经济与趋势研究中心钟俊元介绍,目前包括美国T-Mobile、韩国SKPlanet、中国联通等运营商已经开始利用大数据技术提高客户续约率;印度Bharti、爱尔兰Vodafone等也利用大数据增加资产使用效率。
以中国联通某公司为例,据悉其通过分析通话记录提高客户续约率达34%。中国联通与供应商合作开发了一套客户流失率分析和行销管理平台,对海量的通话记录进行分析,精确找出“高危”用户,准确预测了用户流失。同时该平台可以针对流失的用户提供符合需求的方案,针对APRU较低的客户群设计更个性化的增值服务与优惠方案,从而挽留客户。
采用该大数据平台后,效果十分明显,据相关数据表示,其公司整体APRU值提高10%,客户流失率预测准确性提高5倍以上,客户续约率提高34%。
拓展新业务
除了内部利用相关平台及工具提升效率,在对外开拓新业务方面,大数据也是一把好手,特别是在利用已有的移动设备产生的海量数据方面。
AT&T利用客户行为资料开始发展信息业务。其与其他企业策略结合,将用户资料加值利用,以增加业务收益,并提供对使用者有利价格或服务模式,让用户自愿提供隐私资料。运用这些信息,AT&T不仅可以改善网络及服务品质,同时提供了个人化广告服务,并计划在未来提供匿名化的用户资料行销报表给企业,如零售业、广告业等,当然,用户有权选择不使用。为鼓励用户开放信息,AT&T先是在2013年6月,公告修改隐私政策,明确告知所收集资料与应用模式,并在12月推出U-verse with GigaPower光纤到家服务,以优惠价格选项,获取用户同意被追踪网站浏览行为及提供广告等服务。
除了AT&T外,西班牙电信也利用销售用户行为数据来拓展收益。其针对用户群体流量与移动路径,搭配相关属性进行综合性追踪分析,如哪些因素为影响人们在什么时间去往何处,而这些信息将有助于零售业进行店面地址规划、广告行销,以及公共事业单位进行交通管理等。
在产业合作方面,大数据也为运营商提供了新的合作模式。运营商可以将信息资源开放授权给其他软件企业,由软件企业来开发用户信息的增值服务,创造业务收益。
例如美国IT公司AirSage便与两家无线运营商合作,利用运营商的信息资源提供匿名化、及时性的位置记录或人口普查等服务。据悉,其每天可获取超过1亿台移动装备数据信息,在及时性上,能获取一小时前的最新资料,从而其可以轻松对外提供行为报告、市场研究、城市交通规划、推算其他信息等服务。
同时通过这些信息,可以进一步扩展产业链。新创公司StreetLight Data便基于AirSage 的行为信息资源发展Geospatial BI产品。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29