
云计算技术发展的六大趋势 1、数据中心向整合化和绿色节能方向发展
目前传统数据中心的建设正面临异构网络、静态资源、管理复杂、能耗高等方面问题,云计算数据中心与传统数据中心有所不同,它既要解决如何在短时间内快速、高效完成企业级数据中心的扩容部署问题,同时要兼顾绿色节能和高可靠性要求。高利用率、一体化、低功耗、自动化管理成为云计算数据中心建设的关注点,整合、绿色节能成为云计算数据中心构建技术的发展特点。
![]()
数据中心的整合首先是物理环境的整合,包括供配电和精密制冷等,主要是解决数据中心基础设施的可靠性和可用性问题。进一步的整合是构建针对基础设施的管理系统,引入自动化和智能化管理软件,提升管理运营效率。还有一种整合是存储设备、服务器等的优化、升级,以及推出更先进的服务器和存储设备。艾默生公司就提出,整合创新决胜云计算数据中心。
兼顾高效和绿色节能的集装箱数据中心出现。集装箱数据中心是一种既吸收了云计算的思想,又可以让企业快速构建自有数据中心的产品。与传统数据中心相比,集装箱数据中心具有高密度、低PUE、模块化、可移动、灵活快速部署、建设运维一体化等优点,成为发展热点。国外企业如谷歌、微软、英特尔等已经开始开发和部署大规模的绿色集装箱数据中心。
通过服务器虚拟化、网络设备智能化等技术可以实现数据中心的局部节能,但尚不能真正实现绿色数据中心的要求,因此,以数据中心为整体目标来实现节能降耗正成为重要的发展方向,围绕数据中心节能降耗的技术将不断创新并取得突破。数据中心高温化是一个发展方向,低功耗服务器和芯片产品也是一个方向。
2、虚拟化技术向软硬协同方向发展
按照IDC的研究,2005年之前是虚拟化技术发展的第一阶段,称之为虚拟化1.0,从2005年到2010年时虚拟化发展的第二阶段,称之为虚拟化2.0,目前已经进入虚拟化2.5阶段,虚拟化3.0阶段在不久也将会到来。根据Gartner的预测,到2016年中国70%的X86企业服务器将实现虚拟化。
ArsTechnica网站上刊出的一篇文章评论到,当前的虚拟化市场当中,VMware是老大,微软Hyper-V老二,思杰Xen第三,红帽和甲骨文在争夺第四把交椅。随着服务器等硬件技术和相关软件技术的进步、软件应用环境的逐步发展成熟以及应用要求不断提高,虚拟化由于具有提高资源利用率、节能环保、可进行大规模数据整合等特点成为一项具有战略意义的新技术。
首先,随着各大厂商纷纷进军虚拟化领域,开源虚拟化将不断成熟。Gartner也指出,虽然目前开源虚拟化的市场还比较小,但到2014年底其市场份额将翻番,而且未来也会快速增长。
其次,随着虚拟化技术的发展,软硬协同的虚拟化将加快发展。在这方面,内存的虚拟化已初显端倪。
第三,网络虚拟化发展迅速。网络虚拟化可以高效地利用网络资源,具有节能成本、简化网络运维和管理、提升网络可靠性等优点。VMware和思科公司通过四年的合作,在网络虚拟化领域取得突破创新,推出了VXLAN(虚拟可扩展局域网)。VXLAN已获得多个行业领先厂商的支持。
3、大规模分布式存储技术进入创新高峰期
在云计算环境下,存储技术将主要朝着从安全性、便携性及数据访问等方向发展。分布存储的目标是利用多台服务器的存储资源来满足单台服务器不能满足的存储需求,它要求存储资源能够被抽象表示和统一管理,并且能够保证数据读写操作的安全性、可靠性、性能等各方面要求。为保证高可靠性和经济性,云计算采用分布式存储的方式来存储数据,采用冗余存储的方式来保证存储数据的可靠性,以高可靠软件来弥补硬件的不可靠,从而提供廉价可靠的海量分布式存储和计算系统。在大规模分布式存储技术中,基于块设备的分布式文件系统适用于大型的、海量数据的云计算平台,它将客户数据冗余部署在大量廉价的普通存储上,通过并行和分布式计算技术,可以提供优秀的数据冗余功能。且由于采用了分布式并发数据处理技术,众多存储节点可以同时向用户提供高性能的数据存取服务,也保证数据传输的高效性。目前国外很多大学、研究机构和公司已经或正在着手开发分布式文件系统,已经涌现出一批著名的分布式文件系统,如PVFS、GPFS、zFS、Google FS、Hadoop FS等,进一步更深入的研发也还在进行中。
除了大规模分布式存储技术,P2P存储、数据网格、智能海量存储系统等方也是海量存储发展的趋势体现。其中,P2P存储可以看做是分布式存储的一种,是一个用于对等网络的数据存储系统,旨在提供高效率、鲁棒和负载均衡的文件存取。数据网格是有机的智能单元的组合,类似于计算网格。智能海量存储系统包括主动的数据采集、数据分析、主动调整等。云计算中存储的海量数据应用将为云计算提供新的价值高点,也必将成为云计算发展的重点方向之一。
4、分布式计算技术不断完善和提升
资源调度管理被认为是云计算的核心,因为云计算不仅是将资源集中,更重要的是资源的合理调度、运营、分配、管理。云计算数据中心的突出特点,是具备大量的基础软硬件资源,实现了基础资源的规模化。但如何合理有效调度管理这些资源,提高这些资源的利用率,降低单位资源的成本,是云计算平台提供商面临的难点和重点。业务/资源调度中心、副本管理技术、任务调度算法、任务容错机制等资源调度和管理技术的发展和优化,将为云计算资源调度和管理提供技术支撑。不过,正成为业界关注重点的云计算操作系统有可能使云计算资源调度管理技术走向新的道路。云计算操作系统是云计算数据中心运营系统,是指架构于服务器、存储、网络等基础硬件资源和单机操作系统、中间件、数据库等基础软件管理海量的基础硬件资源和软件资源的云平台综合管理系统,可以实现极为简化和更加高效的计算模型,以低成本实现指定服务级别、响应时间、安全策略、可用性等规范。
现在云计算的商业环境对整个体系的可靠性提供了更高的需求,为了支持商业化的云计算服务,分布式的系统协作和资源调度最重要的就是可靠性。未来成熟的分布式计算技术将能够支持在线服务(SaaS),自从2007年苹果iPhone进入市场开始,事情发生很大的变化,智能手机时代的到来使得Web开始走进移动终端,SaaS的风暴席卷整个互联网,在线应用成为一种时尚。分布式计算技术不断完善和提升,将支持在跨越数据中心的大型集群上执行分布式应用的框架。
5、安全与隐私将获得更多关注
云计算作为一种新的应用模式,在形态上与传统互联网相比发生了一些变化,势必带来新的安全问题,例如数据高度集中使数据泄漏风险激增、多客户端访问增加了数据被截获的风险等等。云安全技术是保障云计算服务安全性的有效手段,它要解决包括云基础设施安全、数据安全、认证和访问管理安全以及审计合规性等诸多问题。云计算本身的安全仍然要依赖于传统信息安全领域的主要技术。不过另一方面,云计算具有虚拟化、资源共享等特点,传统信息安全技术需要适应其特点采取不同的模式,或者有新的技术创新。另外,由于在云计算中用户无法准确知道数据的位置,因此云计算提供商和用户的信任问题是云计算安全要考虑的一个重点。总体来说,云计算提供商要充分结合云计算特点和用户要求,提供整体的云计算安全措施,这将驱动云计算安全技术发展。适应云计算的特点和安全需求,云计算安全技术在加密技术、信任技术、安全解决方案、安全服务模式方面加快发展。
此外,未来的安全趋势,势必会涉及终端及移动终端各个层面,包括各类PC、手机在内的智能终端、可穿戴设备,都有可能会面临攻击者的挑战,这样的攻击对多种设备会变得日益难以防护。解决终端安全,云安全是首先需要解决的,即从云端首先判断安全的趋势,而不是孤立的从一台终端来判断。通过云端安全的大数据分析,可以清晰发现其中存在的多种威胁趋势,从而及时拦截新木马以及防止网络入侵和攻击。隐私权保护问题虽是云计算普及过程中需要解决的一大难题,但随着云计算的发展及相关标准的成熟。相信隐私权会得到更好地保护,云计算也将像互联网上的其他应用环境一样,深刻地影响我们的生活方式。
6、SLA细化服务质量监控实时化
要想让用户敢于将关键业务应用放在云计算平台上,粗放的服务协议显然无法让人放心,用户需要知道云计算厂商能否快速地将数据传遍全国、网络连接状况又能好到何种程度。对于激增的商业需求而言,性能的拓展是不够的,而云计算提供商能够多快地拓展性能也事关重要。用户需要能够让他们高枕无忧的服务品质协议,细化服务品质是必然趋势。云计算对计算、存储和网络的资源池化,使得对底层资源的管理越来越复杂,越来越重要,基于云计算的高效工作负载监控要在性能发生问题之前就提前发现苗头,从而防患于未然,实时的了解云计算运行详细信息将有助于交付一个更强大的云计算使用体验,也是未来发展的方向。
|
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22