京公网安备 11010802034615号
经营许可证编号:京B2-20210330
聚焦2016,关于语音识别、图像识别及大数据!
2016年将是“最好玩”的一年,语音识别和图像识别让我们跟智能设备之间的交互更自然,基于大数据的技术支持,让识别变得主动而聪明。语音识别和图像识别将走进普通人的世界,让我们的生活更生动。
语音识别
语音识别技术虽然起源于1952年,但真正进入消费市场已经是上世纪90年代的事了。目前语音识别有两大发展方向,一个是纯机械指令,基于产品定位而设计命令词组,作为高效的辅助工具存在;一个是智能化理解语境,与人进行互动交流,并承担部分处理工作。后者可能是语音识别未来的发展方向,但实际应用中两者并不冲突。简单精准的机械指令让工作更为纯粹,没必要做多余的计算动作。而很多智能设备将语音作为“解放双手”的第三类互动形态,就需要对人的语境进行“理解”,相信很多朋友都玩过siri、GoogleNow、Cortana,也同时体验过这些语音助手“会错意”的卖萌行为。老罗在去年坚果发布会上曾说所有语音助手都是“伪”智能,虽然有点以偏概全,但目前语音对语境的识别确实还不够智能,远不如机械指令效率。不过这些问题随着深度学习等AI领域技术的崛起将逐渐克服。
图像识别
图像识别从以图搜图到明星、物体识别,再到场景识别,甚至现在延伸到了视频领域,给行业带来了太多惊喜。现在图片内容的价值已经超越图片本身,并且建立了从图片到电商的商业模式。图像识别一般针对画面中一个对象做识别,比如大众熟知的人脸、明星脸等识别技术已经很成熟了,基本识别率达到90%以上。近年、服饰品牌的同款识别和风景识别大行其道,为旅游行业和服饰行业创造了商机。图像识别在视频领域涌现出强大的应用前景,新兴起的互动视频技术video++已经实现视频中的人脸和服饰同款的识别,基于图像识别技术发展视频中的商业场景。另外瞳孔识别的研究已经提上日程,不久的将来,科幻片中所见即所得的情景不再是幻想。
没有基础的技术实力,语音和图像是好玩不起来的,而高级和低级的门槛就在深度学习的研究上。国内虽然起步较晚,好歹在去年赶上了这波风潮,包括图像识别和语音识别在内,还有自动驾驶、无人机、环境还原、机器人等项目,前段时间很火的谷歌AlphaGo在围棋领域击败了欧洲二段冠军,也是归功于深度学习的算法支持。可以说跟用户有交互行为的产品,都开始进行深度学习AI的研究了。通过神经网络的训练学习,语音识别变得更聪明, 实现快速精准的识别动作以外,还能对下一句的语境情绪进行预测,模拟真人对话。另外,语音识别大量运用在翻译市场,争取未来十年内在专业翻译领域完全替代人类。图像识别过去大多是建库识别,深度学习释放了图像识别的识别领域,把识别对象的年龄变化记忆下来,实现动态、多角度、不同光照变化下的识别。
应用领域
安防市场是要求语音和图像识别技术双高的行业之一,未来将不局限在解锁开门等基础功能,运用图像识别技术,实现对象动作识别,根据威胁等级进行危险性判断,提前发出警报或报警。语音识别的运用领域将超高端化发展,近年来语音识别速度屡创新高,在翻译市场、智能硬件助手、AI辅助,行车帮助等等方面实现价值。而娱乐领域的玩法变得多元化,像最近大热的faceu,运用了脸部识别跟踪技术,让普通的自拍可以DIY。还有video++视频开放平台,可以对视频中的明星、衣服同款进行识别搜索,打开了视频到电商的入口。乘着去年SaaS的风口,国内外陆续出现了语音识别、图像识别的技术开放平台,从专业到普通领域,语音识别和图像识别将在2016年做到技术全覆盖。
大数据
数据收集是一个从被动到主动的过程,语音识别从接受指令变成了对指令使用频率的分析,进而形成用户的习惯图表。图像识别亦然,针对用户的识别频率,分析出用户的兴趣画像,这将给予广告主带来精准广告推送的商机。
结语
2016年将是“最好玩”的一年,语音识别和图像识别让我们跟智能设备之间的交互更自然,基于大数据的技术支持,让识别变得主动而聪明。语音识别和图像识别将走进普通人的世界,让我们的生活更生动。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28