数据挖掘又译为数据采矿,它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。如今,“数据挖掘”被到处乱用,从业务人员用一个现代的模式识别方法到数据库分析员用SQL做查询。
最近,我看到不少关于挖掘九律的帖子和讨论,但他们并没有提到其创始人,那个将数据挖掘简洁地描述出来并在整个社区流传开来的人。这令人遗憾,因为我们可以从挖掘九律中受益良多,并且Khabaza本身就是个你该知道的创造者。他是最早的数据挖掘专家,任职于克莱门汀数据挖掘工作组的开发者之一。当你听说数据挖掘已广泛应用于电信和执法之中时,你该知道其奠基人就是是Khabaza。
下面是Tom Khabaza的“挖掘九律”介绍
挖掘九律之一,“业务目标律”:业务目标是所有数据挖掘解决方案的本源
我们探索数据,发掘信息,来帮助我们更好的处理业务。 这难道不是所有业务分析的圣歌吗?很明确,这就该是第一律。每个人都该理解数据挖掘是一个有目标的流程。真的挖掘人员不会在泥沼里打滚,他们有条不紊的按照流程来将有价值的东西暴露出来。数据挖掘人员也是要有条不紊地寻找对他们有价值的信息。
引用Tom Khabaza的话:“数据挖掘,首先它不是技术,而是流程,其中有着一个或多个业务目标。没有业务目标的话……就没有数据挖掘。”
挖掘九律之二,“业务知识律”:业务知识是数据挖掘每一步的核心
我们周围有着一个普遍且严重的误解——数据挖掘不需要 研究人员了解任何事。这是对真正的数据挖掘理论的误读,即从数据中发掘有用的模式,能够也应该交由没有经过正规统计学训练的业务人员。数据挖掘是要让人 ——应用业务知识、经验和洞察力,并依靠数据挖掘方法的业务人员——变得强大,来找到隐含于数据中的意义。
挖掘九律之三,“数据准备律”:数据准备能让数据挖掘流程事半功倍
这一点对于那些和数据打过交道的人来说毫无意外,无论你是数据挖掘专家,分析人员或者其他职位。然而,还有其他的神话围绕着数据挖掘,说数据挖掘会克服数据质量和完整性的问题。这一神话被那些长期被遗忘的数据挖掘产品供应商所传播,但数据挖掘社区依然努力让数据记录更加正常,数据挖掘需要良好的数据。
当然,仅仅有良好的数据是不够的。对数据的操作是挖掘过程的重要环节,Tom Khabaza解释道:
“原理要比数据的状态更深入:随着数据的准备,数据挖掘人员要定义问题空间。有两个关于“问题空间”的观点。第一个是数据挖掘人员将数据转换成适合于算法应用的形式就够了——对于绝大多数算法来说,这意味着一个样本一行记录。第二个是数据挖掘人员要通过利用有用的信息来优化数据或者将信息转化为更有效的形式,从而易于让算法找到解决方案。如样本包含了计算项,分级,和计算日期时间差。”
挖掘 九律之四,“天下没有免费的午餐”:只有通过实验才能发现给定应用的正确模型
(NFL-DM = “There is No Free Lunch for the Data Miner”)
现在我们可以开始些有趣的讨论。在本文的最后,我将指导你到那些可以读到、参与到的相关讨论中。现在,最重要的是,你要认识到实验是数据挖掘理论和实践的核心。
挖掘九律之五,“沃特金斯定律”:总会有模式存在
数据挖掘人员的实践经验就是,当探索数据的时候,总能发现有用的模式。
(沃特金斯,Watkins,即David Watkins,也是克莱门汀的知名数据挖掘开发者。)
挖掘九律之六: 数据挖掘将业务领域的感知放大
这一条的意思是,得益于数据挖掘算法和流程——是它们照亮了数据中的那些可能会被埋没的模式。
挖掘九律之七,“预测定律”:预测将信息从局部扩散到整体
这是我最难在脑海中理清的一条,但它意味着:
数据挖掘提供给我们一种途径,来看到那些未知的结果,并找到那些已知的相似情况(原文:Data mining offers us ways to look at a case whose outcome is unknown, and find similarities to past cases where the outcome is known)。通过理解这些相似性,我们获得了推测未来的信息。
挖掘九律之八,“价值定律”:数据挖掘的结果的价值并不取决于预测模型的精度和稳定性
流程的真正价值在于满足了业务需要,当然,模型的精度和稳定是好的,但较之于业务预测的价值,有意义的洞察力之价值,或者应用预测于实际的价值来讲要小得多。
挖掘九律之九,“变化律” :所有的模式都会受到变化
今天还能带来业务价值的模型,可能明天就过时了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03