
数据挖掘又译为数据采矿,它是数据库知识发现中的一个步骤。数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。如今,“数据挖掘”被到处乱用,从业务人员用一个现代的模式识别方法到数据库分析员用SQL做查询。
最近,我看到不少关于挖掘九律的帖子和讨论,但他们并没有提到其创始人,那个将数据挖掘简洁地描述出来并在整个社区流传开来的人。这令人遗憾,因为我们可以从挖掘九律中受益良多,并且Khabaza本身就是个你该知道的创造者。他是最早的数据挖掘专家,任职于克莱门汀数据挖掘工作组的开发者之一。当你听说数据挖掘已广泛应用于电信和执法之中时,你该知道其奠基人就是是Khabaza。
下面是Tom Khabaza的“挖掘九律”介绍
挖掘九律之一,“业务目标律”:业务目标是所有数据挖掘解决方案的本源
我们探索数据,发掘信息,来帮助我们更好的处理业务。 这难道不是所有业务分析的圣歌吗?很明确,这就该是第一律。每个人都该理解数据挖掘是一个有目标的流程。真的挖掘人员不会在泥沼里打滚,他们有条不紊的按照流程来将有价值的东西暴露出来。数据挖掘人员也是要有条不紊地寻找对他们有价值的信息。
引用Tom Khabaza的话:“数据挖掘,首先它不是技术,而是流程,其中有着一个或多个业务目标。没有业务目标的话……就没有数据挖掘。”
挖掘九律之二,“业务知识律”:业务知识是数据挖掘每一步的核心
我们周围有着一个普遍且严重的误解——数据挖掘不需要 研究人员了解任何事。这是对真正的数据挖掘理论的误读,即从数据中发掘有用的模式,能够也应该交由没有经过正规统计学训练的业务人员。数据挖掘是要让人 ——应用业务知识、经验和洞察力,并依靠数据挖掘方法的业务人员——变得强大,来找到隐含于数据中的意义。
挖掘九律之三,“数据准备律”:数据准备能让数据挖掘流程事半功倍
这一点对于那些和数据打过交道的人来说毫无意外,无论你是数据挖掘专家,分析人员或者其他职位。然而,还有其他的神话围绕着数据挖掘,说数据挖掘会克服数据质量和完整性的问题。这一神话被那些长期被遗忘的数据挖掘产品供应商所传播,但数据挖掘社区依然努力让数据记录更加正常,数据挖掘需要良好的数据。
当然,仅仅有良好的数据是不够的。对数据的操作是挖掘过程的重要环节,Tom Khabaza解释道:
“原理要比数据的状态更深入:随着数据的准备,数据挖掘人员要定义问题空间。有两个关于“问题空间”的观点。第一个是数据挖掘人员将数据转换成适合于算法应用的形式就够了——对于绝大多数算法来说,这意味着一个样本一行记录。第二个是数据挖掘人员要通过利用有用的信息来优化数据或者将信息转化为更有效的形式,从而易于让算法找到解决方案。如样本包含了计算项,分级,和计算日期时间差。”
挖掘 九律之四,“天下没有免费的午餐”:只有通过实验才能发现给定应用的正确模型
(NFL-DM = “There is No Free Lunch for the Data Miner”)
现在我们可以开始些有趣的讨论。在本文的最后,我将指导你到那些可以读到、参与到的相关讨论中。现在,最重要的是,你要认识到实验是数据挖掘理论和实践的核心。
挖掘九律之五,“沃特金斯定律”:总会有模式存在
数据挖掘人员的实践经验就是,当探索数据的时候,总能发现有用的模式。
(沃特金斯,Watkins,即David Watkins,也是克莱门汀的知名数据挖掘开发者。)
挖掘九律之六: 数据挖掘将业务领域的感知放大
这一条的意思是,得益于数据挖掘算法和流程——是它们照亮了数据中的那些可能会被埋没的模式。
挖掘九律之七,“预测定律”:预测将信息从局部扩散到整体
这是我最难在脑海中理清的一条,但它意味着:
数据挖掘提供给我们一种途径,来看到那些未知的结果,并找到那些已知的相似情况(原文:Data mining offers us ways to look at a case whose outcome is unknown, and find similarities to past cases where the outcome is known)。通过理解这些相似性,我们获得了推测未来的信息。
挖掘九律之八,“价值定律”:数据挖掘的结果的价值并不取决于预测模型的精度和稳定性
流程的真正价值在于满足了业务需要,当然,模型的精度和稳定是好的,但较之于业务预测的价值,有意义的洞察力之价值,或者应用预测于实际的价值来讲要小得多。
挖掘九律之九,“变化律” :所有的模式都会受到变化
今天还能带来业务价值的模型,可能明天就过时了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01