
SAS应用:都是小数点惹的祸
今天有人用了两种方法通过分组求平均数问题,发现结果不一样。为了说明问题,我自己简单地造了些数据,如下:
data dup;
input id date field value ;
cards;
1 2 0.0001 10
1 2 0.0001 10
1 2 0.00001 10
1 2 0.00001000001 10
1 3 0.00001 10
1 3 0.00001 10
1 3 0.00003 10
1 3 0.00003 10
1 3 0.00003 10
;
run;
proc sql;
create table NoDup1 as
select unique id, date, field, avg(value) as value from Dup group by id, date, field;
quit; ;
*method 2;
proc means data = Dup nway ;
class id date field;
var value;
output out = NoDup2(drop = _type_ _freq_) mean = value;
run;
初一看来,好像代码没什么问题,应该结果一致,然而结果运行后,用sql得到的结果与proc步不一样,这是为什么? 似乎这是SAS的错误,哈哈这个多么伟大的一个发现啊! SAS可以说是总多行业里面的标准,竟然也会错。 其实这不是第一次发现这类问题。 以前也遇到过同样的一个问题,就是:
data ex;
do i= 0.05 to 0.15 by 0.01;
if i=0.1 then output;
end;
run;
这个代码运行后,ex数据集是空的,是不是SAS出错了。后来发现这是由于计算机存储小数的浮点问题,循环5次后,i应该等于0.1,实际上非常接近0.1,是个近似值,并不是等于0.1,因此并无数据输出到ex里面。
那么回到上面的那个问题,根本原因是proc sql和proc mean步对数的小数点处理不同,proc mean考虑到小数点多于sql, 因此会导致nodup1比nodup2少一条观察。下面我提供第三种解决此类问题的代码,data步,也是商业大型数据的常用方法:
data nodup3;
set dup;
by id date field;
if first.field then do; num=0;mean=0;end;
num+1; mean+value;
if last.field then do; value=mean/num; drop num mean; output; end;
run;
这个也是和proc mean步结果是一样的。
有时候也许不需要考虑没必要的小数位,可以用函数round,int,ceil等,还有一种方法就是把需要分组和比较大小的非整数用format格式化一下。
一般来说,我如果发现SAS运行结果和我想的不一样,可以归结于两点:1,自己的代码有问题;2,小数点问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16