
大数据爆炸时代,企业云存储该怎么玩
随着移动互联网的迅速发展,智能终端、可穿戴设备、智能家居、物联网以及基因测序正在快速普及。企业和用户每天接触的数据吞吐量呈现出指数级的增长趋势,我国社会正在步入大数据爆炸的时代。
大数据时代降临的今天,个人云存储服务早已迈向免费时代,而中国各行各业的互联网化与现实世界数据化的趋势,计算和应用都更加需要集中化,使得市场对企业级别云存储的需求更加迫切。面对这样的市场趋势,企业级云存储市场的“圈地运动”呼之欲出,“免费”二字成为了各家的新玩法。
企业级数据的大爆发
IBM 商业研究院与牛津大学的合作调研研究报告称,整个人类文明所获得的全部数据中,有 90%是过去两年内产生的。而到了 2020 年,全世界所产生的数据规模将达到 2013 年的44 倍。按照《“互联网+”基础设施数据中心发展报告》数据显示,未来8 年国内在线数据量的复合增长率将会达到84%;而线性增长的数据中心供给年复合增长率只有30%-40%,这使得数据中心需求和价值不断增加。
如今越来越多的智能设备相继投入市场,互联网巨头也开始加大投入,智能硬件离不开数据收集和存储,云也成为连接智能硬件和人的关键。智能手机日益普及,用户庞大需求背后的平台企业所需的数据支撑同样在飞速增长。
以物联网行业和医疗行业为例,其中的企业级数据可谓天文数字。物联网的启动,使得未来更多来自社会环境、公共领域上的数据量增加。如不断部署的高清监控摄像头,一个 1080P 的摄像头的码流率为 8Mb/s,一天将会产生约 86.4GB 的视频数据量。随着医疗行业基因测序的开展,对数据存储的要求也会大幅增长。以人类为例,人类基因组拥有 30 亿个碱基,数据量即为 3Gb;假设全球 70 亿人口数量,如果每人都测一次,则测序的数据量至少为 3Gb*70 亿。
数据爆发背后的变革
2009 年开始政府部门逐步出台了一系列政策鼓励云计算产业的发展,地方政府也配合着进行了一些项目投资,但由于当时国内云计算产业与技术都还不够成熟,且用户对云计算的安全性等问题存在顾虑,直到 2012 年底前云计算都并未被广泛地采用。2013 年开始,我国云计算技术已步入成熟,企业对云计算已有一定认识,且通过云计算削减成本的意愿较强烈,阿里、百度、盛大等国内互联网公司纷纷推出自己的云计算业务,同时 Microsoft, Google, Salesforce 等海外云计算公司开始纷纷将其云计算业务引入中国。 2013 年 12 月 18 日 Amazon 正式宣布将其云计算业务 AWS 引入中国,标志着国内外各云计算巨头在国内布局基本完毕。相关公司此后将陆续开始在国内推广自己的云计算服务,国内市场竞争大幕开启。
企业云存储属于互联网时代的一个产物,把人们从U盘和移动硬盘时代解放出来,文件存储可以随时进行。云存储给企业提供了共享、协作的环境,受到许多大中小企业的青睐,通过简单的搭建就能帮助企业实现办公上云。在云存储帮助企业解决这些办公便利性上,市场发展也不断推进,许多企业纷纷抛弃以往的个人云存储,开始使用企业云存储。
但在数据大爆发的今天,一般企业的数据增长以及实现数据分析所需要的存储空间几乎没有上限,这背后的成本让不少企业面对拥抱“互联网+”这股潮流显得心有余而力不足。庞大的数据存储及数据计算需求与高昂的云存储费用之间形成了一股不可逆转的矛盾。也推动企业级云服务提供商开启了一场以免费为口号的圈地运动,云厂商将盈利点转向软件及服务的趋势已经初见端倪。
从国外市场来看,去年7月 Google 就曾全面调整其云存储计费,几乎达到免费的程度。而在国内市场,今年5月,阿里云和腾讯云的大幅降价实际上也吹响了变革的号角。2015年,国内云服务商UPYUN三次下调旗下云服务产品的价格,总体下调幅度将近50%,而在9月1日,UPYUN直接对企业用户免费开放存储服务,向行业扔进了一颗重磅炸弹。
变革暗藏的数据野心
目前来看, UPYUN 平台已经聚集了超过 10 万的付费用户,其中包括浙江卫视、唱吧、蘑菇街、蜻蜓FM、顺丰、e代驾等众多业界名企。但免费在移动互联网的今天,一直都是一项重磅炸弹,企业级云存储市场同样如此。
免费可以在一时间积累大量中大小企业用户,让企业办公高度云端化。在大量的使用过程之中,不断催生了基于云存储平台的个性化需求,带给云存储企业的就是客户的二次开发。客户也从单纯的免费进入更实际实用阶段,云服务提供商可以由此获利。
服务免费更要服务靠谱,据了解,UPYUN 在全国范围内部署了6大数据中心,对客户上传存储的数据实行异地机房的三备份方案,基于云计算的可拓展平台满足了大数据对存储空间不断扩展的需求。而它的灵活性可以让数据能够被复制、迁移和保存到任何地方。同时,通过三重备份、防盗链、全网安全访问保障了用户数据安全。UPYUN 借助一站式的数据存储管理平台,为企业大数据提供了一种简单有效的成本效益方案,以及性价比最优的基础设施保障。在降低费用的同时,实现服务的提升。
可以预见的是,未来将有一大批中小企业随之拥抱互联网,拥抱云计算。而在免费趋势的带动之下,越来越多的企业将得到全方位的提升。企业级云服务带来的不仅是互联网思维的发展,更能在企业内部做到公开、透明、数据化展现,实现信息的共享、协作和平等,管理变得更加的扁平化。让互联网的思维产业延伸到企业的生产、管理和销售等方方面面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08