
如何重构未来,挖掘数据价值?
面对这样近乎于取之不尽、用之不竭的数据“宝藏”,应该如何对其进行采集、存储、管理、分析、挖掘,成为了各行各业近年来最为关注的重要话题。
那些重视IT科技的邻国
刚刚看完抗日战争胜利70周年的大阅兵,此时聊聊日本似乎非常应时应景。
日本虽然在二战中被盟军打得满地找牙,但是战争结束后立即制定了“科技立国”的复兴政策。基于对教育和信息产业的重视,以及来自各国的大批订单,日本又一次迅速崛起并成为世界第二经济大国。即使是在房地产泡沫破灭和广场协议之后,日本经历了长达二十年的经济停滞,在GDP总量上被中国赶超,但日本民众仍然维持着极高的个人素质和生活水准,企业创新能力依旧世界领先,看不出丝毫衰败迹象。
再来看看另一个邻国印度。我知道有很多同胞都看不起这个还存在奇葩种姓制度的国家,不过印度的软件行业却仅次于美国、雄踞全球第二。而印度人谈起IT时也常常会将其解读为“India's Tomorrow”,语气中透着十足的骄傲。中国软件行业近年来虽然一直在努力学习和参考印度,但是两者之间仍然隔着一条巨大的数字鸿沟。
不难发现,日本和印度的共性,就是对IT信息科技的高度重视,以及善于抓住信息时代的发展机遇。那么在风起云涌的云计算大数据时代,中国是否能够把握机会后来居上?
那些被浪费的数据价值
据统计,目前全世界的数据正在以每三年翻一番的速度急剧膨胀。而这些海量数据当中,有95%以上都属于图片、音频等非结构化数据,并且这一比例还在不断提升。
面对这样近乎于取之不尽、用之不竭的数据“宝藏”,应该如何对其进行采集、存储、管理、分析、挖掘,也就成为了各行各业近年来最为关注的重要话题。
除了没有经历二次分析浩如烟海的图片、音视频等非结构化数据之外,日志数据等用户行为记录也是一座远未被人们充分挖掘和利用的“金矿”。一方面,由于存储空间有限,绝大部分企业都会定期删除尚未分析的日志数据;另一方面,包括一些互联网企业在内,其对日志数据进行处理和分析的能力也极为有限,这也导致数据中蕴含的巨大价值远未被真正挖掘。
数据如何重构未来
尚未挖掘的数据价值被大量浪费的现象,也引发了业界有识之士的高度关注和深刻思考。
作为国内知名的云存储数据服务提供商,创建于2011年的七牛仅仅用了四年时间就发展到了28万企业用户,每日数据处理量达到12亿次。凭借在该领域积累的丰富经验,七牛对数据在企业构建未来商业中的重要性、企业在数据存储和处理上面临的诸多问题,都有着极为深切的体验和感悟。
为了更好地挖掘和利用数据价值,七牛举办了一场以“数据重构未来”为主题的D-Future大会,联合来自政商企界的近百名CEO、高管和技术大咖,通过十场行业演讲、六大巅峰对话、近二十场技术话题分享,从产业和技术的角度对数据从何而来、数据如何应用、数据如何重构未来等三大问题进行了探讨。
国务院发展研究中心基础经济研究部副部长田杰棠指出,中国有望成为世界上第一数据大国和“世界数据中心”。数据的流动需要更加开放和规范,数据产权的界定也要更加清晰,国家对此将做出相应的政策导向。数据只有流动起来,各行业效率才会得到提升。
《大数据时代》一书的作者维克托·迈尔·舍恩伯格也亲临现场,并通过Jawbone手环、Uber、Airbnb等热门大数据应用,形象地指出了先收集数据、再聚焦问题、发现创新性问题的重要性。
考虑到互联网时代不同行业面临的环境和情况也各不相同,大会还邀请了来自金融、社交、O2O、娱乐等各行各业的领头企业创始人、高管,针对不同行业领域中如何精益运营用户内容、如何用数据辅助用户画像、如何通过数据挖掘用户价值等多个话题进行了讨论。其中像通过云存储与人脸识别来解救走失儿童、用数据技术改善中国养老现状、如何部署移动时代的安防监控等民生问题,均引发了上千名与会嘉宾的极大兴趣。而正是通过各行各业对大数据的挖掘和应用,数据正在重构这个世界的未来。
重新定义云计算和大数据
在本次大会上,七牛发布了DORA数据处理平台,以及针对在线教育、旅游、娱乐、硬件、广电、O2O、安防等七大行业的数据服务解决方案。这些解决方案颠覆了传统方案中“产品+项目”的模式,以“组件服务+场景”的模式为用户提供服务,使得用户的产品可以更加快速地构建,同时也更加稳定。
七牛CEO许式伟指出,作为全球第一家用存储、加速、数据处理三个词来描述云存储服务的企业,七牛的定位是成为最开放、最完备的数据服务提供商。本次大会上发布的DORA数据处理平台、七大行业数据服务解决方案,将与七牛原有的KODO对象存储服务、FUSION融合CDN管理平台,以及即将发布的PILI直播云服务,一起重新定义云存储。在不远的2016年,七牛还将通过更具颠覆性的技术和产品,重新定义云计算和大数据。
被忽视的数据服务商价值
在这次参加D-Future大会的过程中,还发生了一个小插曲。我的一位前同事离开媒体后,几年打拼下来,现已成为某投资集团高管(你看干过记者就是一切皆有可能)。大家不难想象,当在这样一个数据行业的盛会上撞见这位光投资一个项目就是几百万甚至几千万的土豪时,我的感觉有多么诧异。
这位金融精英向我解释说,作为投资方在考察项目时要想避免被坑,常常需要找多个同类项目进行比对,并且还会通过产业链上下游的合作伙伴了解其业务情况及健康程度。而拥有28万家企业用户的七牛,在服务客户的过程中不仅对各行各业都有着深刻了解并积累了丰富经验,而且对企业的数据流向、业务流程、盈利情况等也了如指掌,因此其给出的意见和建议对于投资方来说有着极高的参考价值。未来他们集团还计划与七牛在更多领域开展合作。
在这个“数据为王”的全新时代,看来不仅仅是大数据,像七牛这样的数据服务商,本身其实就有巨大的价值可挖。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04