
当阿里巴巴跨界把金融玩得风生水起之时,传统银行业正在感受“狼来了”的危机。《每日经济新闻》记者注意到,银行业之所以惧怕阿里巴巴,是因为阿里巴巴有大数据在手,而传统银行恰恰缺失的就是大数据。在此背景之下,传统银行纷纷联手互联网公司,或者亲自涉足电商,以补大数据之短板,来迎接阿里巴巴的挑战。但业内人士认为,真正困扰银行业的不是技术,而是思想及心态。银行只有把金融服务和用户的需求有机地结合起来,“大数据”才能真正在银行的转型中起到翻天覆地的作用。
银行面临尴尬局面
“银行目前在大数据时代面临一个很尴尬的局面,就是不知道客户的真实想法。”在接受《每日经济新闻》记者采访时,北京先进数通信息技术股份公司研发部总经理完献忠感叹道。
完献忠所在的公司是一家专注于银行解决方案的提供商。根据他的介绍,国内传统银行有一套完整的数据仓库或者BI架构做数据分析,把内部企业数据进行整合之后,把数据装到数据仓库里,基于这些数据来建设满足银行各种管理需要的应用。但是,随着最近几年这种传统技术面临诸多问题,很多问题到了很难解决的地步。
“总结下来有几方面,首先是庞大的数据量。世界上任何银行都无法跟中国的银行比数据量和交易量,包括客户数、账户数、交易次数都是绝无仅有的。数据的快速增长,导致了数据加工成本高,银行的设备要不停更新换代。很多大银行可能有上百个系统,而且数据种类庞多,随着银行流程改造,越来越多非结构化数据和半结构化数据要纳入管理和分析。随着互联网行业的发展,客户的行为数据以及物联网里传感器产生的数据都会成为分析的对象,这就导致传统架构无法满足新的数据形式。”完献忠说道。
与此同时,新的经济形势下要求银行对很多业务需求作出更快的响应,也需要更高的时效性。而传统技术是批量处理的方式,无法满足高时效性要求,并且数据分析结果在传统模式下不能融合到业务流程里。
完献忠进一步表示,“最严重的还是业务层面的问题,银行长期以来是封闭的系统,银行不了解客户的真实需求。传统银行是为客户提供服务,客户的参与度非常低。以往银行的分析系统都是基于对内部数据的基础进行分析,而对真正的客户行为数据在银行里是没有的。”
银行的数据短板
以银行零售业务转型的例子来看,银行有产品开发部门,并建立了很完善的数据仓库和商业智能系统。在传统数据仓库分析模式下,银行把内部数据进行整合之后,传给数据仓库,进行传统的数据分析,找出有商机的目标客户群,根据金融产品匹配用户,最后通过各种渠道进行营销,一直到现在银行都在做主动营销。
但在完献忠看来,这种营销模式的问题在于,银行是从主观上认为客户应该会喜欢什么样的金融产品,而并非客户的真实偏好,这导致主动销售的成功率非常低,而且会因为银行的主动销售造成很多产品理解上的纠纷。
可见,在互联网时代,银行正在“生产”着庞大的数据,且越积越多,这些内部数据量巨大而复杂,传统的设备与数据分析软件已无法满足新的数据形式。在这样的背景之下,银行仍用着传统的营销方式推销金融产品,没有精准的数据营销,没有合适的产品,大大降低了成交量。
随着银行自身数据的增多,大数据有利于其优化资源,这些问题恰好可以通过大数据提供很好的解决方案。从表象来看,数据来源变了,以往分析基础都是企业内部的数据,经营活动或者管理活动过程中产生的数据。但是未来,互联网数据、物联网时代的机器数据,传感器产生的机器数据已成为主要的分析对象。
因此,完献忠认为,在互联网时代进行数据分析的时候,除了银行的内部数据以外,还需要纳入互联网数据,互联网数据记录了银行客户的痕迹和行为,可以从中分析出客户的风险喜好、投资偏好、个性特征等,从中分析出客户可能会喜欢什么样的产品,并为客户量身定制产品开发,这样的产品才是客户真正需要的。
“最大的不同在于,一个是银行认为客户需要什么,另一个是真正基于客户想要什么分析出来的结果。这样的零售业务创新转型,我觉得未来可能会越来越多地出现。”完献忠说道。
大数据争夺战
“如果要转型,肯定还是要跟一些互联网企业在客户数据方面进行合作。”完献忠说。在他看来,大数据时代银行要创新转型,最容易做的可能是在客户服务和主动营销方面。
根据他的介绍,在这方面银行面临一个问题,银行的客户数据只是客户的基本信息、持有金融产品的信息以及客户的交易信息三个方面的数据。而银行却缺少最重要的信息,就是客户的行为数据,而客户的行为数据和客户喜好、客户习惯等数据掌握在互联网企业手中。
与此形成鲜明对比的是,阿里巴巴等IT企业,正是依靠手中掌握的客户行为数据,悄然布局金融业。
在阿里巴巴的倒逼之下,相关银行正寻求突围。目前银行突围的路径主要有两个,第一种方式是,有的银行采取跟电商或者互联网账户系统进行合作,以借助外力来补缺数据短板。
“如果银行跟一家电商合作的话,银行可以在网银上,通过自己的渠道帮电商做一些推广。电商也可以更好地把银行的服务纳入到电商的商务环节里,我认为这是互补的。在这方面,我比较看好全国股份制商业银行,他们的这块应该是走在最前面的,至少我觉得会比大行走得早。”“中国目前有两个大的账号系统,一个是新浪,一个是腾讯,价值不可估量。如果银行真正要进行用户行为分析,真正基于客户进行转型,我认为最终还是要选择跟这些企业合作。银行客户服务模式要转型,必须要有客户的行为数据,必须要真正了解客户到底需要什么东西。”
另一种方式是,有些银行通过自己进入电商领域,以积累客户的行为数据。至此,传统银行业未来的业务会分成两种模式:线上和线下,线上延伸到互联网,线下就是智能柜台。比如中国建设银行在2012年6月28日推出了一个名为善融商务的网上商城。
英国 《金融时报》曾对此分析道,这对于建行来说这是一项极不同寻常的战略决策,凸显出中国银行业的两种新情况:首先,在政府过度保护之下的中国银行业,突然发现自己处于一个竞争激烈的环境之中。其次,围绕“大数据”控制权的争夺战正在中国升温,银行希望尽可能多地收集客户信息。
该报引述建行负责电子银行业务的一位高管的表态称:“现在我们去做这个平台,就是要变被动为主动,去解决信息不对称的问题,改变银行脱媒的现状,用我们自己的平台留住客户。否则,在整个价值链和服务链上,我们将被压缩得越来越窄。”
值得注意的是,在此之前,建行与阿里巴巴有过四年的“甜蜜期”。在建行支持下,阿里巴巴在2007年推出一个专注于小企业的贷款计划阿里贷。阿里巴巴拥有大量用户信息,并汇集了他们详细的信用记录,而建行坐拥巨额资金,希望贷款给无信用历史的小企业。2011年,双方合作到期后,没有续约。但却推动了建行电商业务的萌芽及发展。
心态成转型掣肘
很显然,银行业已步入大数据竞争的时代,占领了数据制高点的公司才有更多机会打赢这场变革。目前,国内大部分银行在探讨大数据问题的时候,还仅仅是基于技术层面的考量。
IBM软 件 集 团 大 中 华 区PureData及IBMBigData销售总监肖冰对《每日经济新闻》记者表示,“我觉得传统的银行其实都是航母,这些银行拥有很大的客户群落,有很好的业绩支撑。但是我们所看到的情况是,这种大银行使用新技术时是有包袱的,因为他要考虑固有的东西。比如热数据、冷数据的概念,长期以来冷数据怎么去存、怎么管,这些问题一直没有很好地解决。对于新兴的商业银行来说,大数据技术应该是给他们提供了一个手段,从另外一个方向上可以获取更多的客户,这样再和传统老牌银行竞争可以获得优势。”肖冰表示。
而完献忠则认为,真正困扰银行业或者传统行业的不是技术,而是思想及心态。“其实我们的银行业作为一个传统行业,之前是一个非常封闭的系统。大数据时代面临的最大问题不是技术问题,而是怎么进行业务转型的问题。业务应该从封闭转向开放,从以往完全被动彻底转向主动。从以前客户从不参与银行的业务处理过程到让客户参与这个过程,并且把整个银行的业务、金融服务有机地跟用户的需求结合起来。只有真正实现业务架构调整后,我认为大数据才能真正在银行业起到翻天覆地的作用。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25