
不玩虚的,金融大数据为何四步走
金融大数据,目前有四个阶段。第一阶段是基于数据存储;第二阶段是分布式计算;第三阶段是大数据挖掘与分析;第四阶段是数据服务。对于商业银行,包括工商、建设、农业、交通和中行这国有五大行来说,都处于第一阶段。其中,建行处于平台选型阶段。农业银行已经完成数据存储方面的工作,但还未上线。而张子良老师负责的光大银行项目,在2013年10月上线,是国内第一家真正意义上将金融大数据应用到银行核心业务系统的案例。
银行的大数据处理
银行等金融机构,对大数据的处理需求有其特殊性。第一个就是结构化数据存储,第二个是数据挖掘。下面我们将逐一为您解开。
结构化数据存储,商业银行有实时查询数据库,用来处理历史金融数据。受限于传统ROE(Oracel、DB2、Sybase等)数据库的单表数据量瓶颈。银行数据超过一定上限就会影响查询效率。解决瓶颈的方法只能通过提高成本,大量购买高性能硬件和应用软件来解决。虽然银行IT部门预算丰富,但也还是需要平衡性能与成本的关系。
另一方面,银行需要在现有的数据上进行增值挖掘。如果依靠传统VR,对成本的影响巨大。采用大数据技术、采用分布式集成框架、采用开源框架,一方面满足了成本依赖,另外一方面运算性能方面有所提升。
在业务数据模型方面,商业银行分为两个层面。第一个层面就是面向业务层面,我需要选择哪些参数来构成我参与预算的数据模型。这是业务层面上面,这一部分是与以前的模型一致。
另外一部分就是针对数据模型还有什么样的计算方式,需要哪些数据的输入,这方面发生了变化。因为你传统离岸模式是单机的,运算性能始终都是它无法突破的东西。所以说它对数据处理的时候,往往是基于销量数据的,基于出让数据做小批量的数据尝试,然后得出一些规律性的东西,然后再反向推导到其它数据,这是传统的模式。在这个环境里面有了一种突破,就是我可以去全量数据,构建数据模型的参考体系,这个数据量更大。另外一块性能更高一些,比单机模式要快。
金融大数据安全性
数据安全其实是一个相对的改变。因为在这里面大数据技术与数据安全性能整个要求本身没有直接的关系。怎么说呢?如果不采用大数据技术,安全性是不是一样面临同样的问题呢?对于传统模式,无论你采用什么样的技术,同样面临数据安全性的问题。
所以在这个里面包括各个环节,像存储的安全,传输的安全,展现的安全。这种模式,传统的银行采用的模式里面,不包括物理网站的隔离,包括访问权限的控制,包括软加密这些都是在传统的模式里面适用的。大数据技术,与银行数据安全性没有直接的关系,只不过区别是什么呢?
大数据技术是一个新的技术体系,银行原来需要单机处理的东西,现在需要在多个节点去参与进来,这样带来一个什么样的挑战呢?就是必须保证集群是能够被特定的用户去访问,而且特殊的节点不能够被假冒。如果这个节点正在自动化处理,如果黑客冒充我的某个节点,要保证不会导致数据的泄露。这种情况下其实是大数据在安全方面特殊的要求点,必须做到物理网站的隔离。只有授权节点能够参与到我集群的工作中,这就是访问的安全。
节点数据的传输,这一块目前来讲银行的解决办法还是基于物理网隔离和用户的授权。这里面还是有瓶颈的,节点与节点之间,数据在共享的时候,速度还是瓶颈。这种加密需要去改造现有的大数据框架,目前来讲还没有看到国内银行有解决这个问题的。
总结
金融大数据,目前还处于一个逐步实施的阶段。商业银行中的金融大数据,既包括传统的BI结合,也包括对大数据环境底下数据分析挖掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08