京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网产品经理和数据分析师哪个前景好
显然,这里所说的数字和数据,不是指我们每月银行卡里面多出来的那个,而是产品的数据,其中包括行业整体数据、网站运营数据、用户数据、广告投放/转化率数 据、业务/产品销售量数据、产品投入/收益数据等等,所有这些数据构成的综合指标,将决定一个产品经理的业绩评定——当然,最终反映出来的,可能就是个人 银行卡里的数字。在数据指标是很科学的体系的情况下,数据分析得出的结论确实比主观的臆断会更具有确定性和说服力。那么,产品经理在管理一个互联网产品时,到底需要关注哪些数据呢?
一般来说,我们主要关注的有以下几个方面:
网站流量数据。比如访问量、点击量、浏览量、转化率、停留时间等等。以上是基础的指标,但结合到几十万网页还有不同来源、不同时间的时候,就是非常复杂数据体系了。
网站用户数据。比如用户人口的属性特征:年龄、性别、行业、职位、地区等等;另外,还有用户行为特征:登录次数、注册数、注销数、点击数、收藏数、操作数、订购量等等
3.访谈数据。可能有些公司会做一些调查问卷,如果能够按照统计学规范设计成量表,那么这种访谈数据也是很有价值的。一般的统计就能从里面了解不少信息,如果问卷设计合理,还可以利用多元统计的方法进一步挖掘更深入的信息。
财务数据。比如总销售额、毛利、纯利润、成本、广告投放额等。产品是不是赚钱,能赚多少钱,是一个产品经理关注的重点,也是追求的目标。
外部来源数据:行业市场份额、竞争对手数据等。
搜索引擎数据:搜索引擎来源比例、SEM流量所占比例、搜索关键词以及各个关键词产生的PV值等。 以上这些数据,是我们经常需要经常用到的,具体在使用的时候,还可能需要根据产品性质不同、KPI不同和职责不同,来选择不同的数据类型,因为市场部和BD和老板所看的数据都是不一样的。
对于一个产品经理来说,他不只需要像一个市场分析者或者财务分析者一样了解数据结果,更要通过这些数据的积累和经验进行更加细化的分析和研究,从而了解用户是如何创造出这些数据的,以及为什么创造出这样的数据。
只有做到了这些,才能将繁琐枯燥的数字转化为运营能力的提升。那产品经理如何才能做好数据分析呢?首先,要拥有一个好的统计系统,没有好的数据来源,再强的分析能力,也没有用武之地。现在互联网上提供很多,如CNZZ,当然也可以根据产品情况有针对性地进行自主开发;其次,要持续关注数据的变化,最好有专人负责数据汇总和解读。
运营数据分析是一个数据持续积累和研究的过程,越多越细致的数据,越能从中获得有价值的分析结果。第三,要定出产品的主要考核指标,并进行定期的周度、月度、季度、年度或者某一个特别事件的专项数据分析,从而了解一个阶段内的发展过程,了解发展趋势;第四,需要采用一些图表,以增强数据的可读性。有时候,再好的语言和文字,也不如一张图来得简洁明了;
最后,除了自己的产品外,我们还需要时刻关注行业数据的变化,以及中国整体网民对同类型产品的偏好度、用户属性和变化情况。目前也有很多第三方公司提供这类报告,比如艾瑞、CNNIC等。总而言之,数据分析是一个过程漫长,事务繁杂的工作,但只要你对它保持足够的重视程度,坚持不懈地去做,却可能有意外的收获。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16