京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中移动掘金大数据 浪潮为其改造基础架构
海量数据是4G时代送给电信运营商最大的礼物。信息、互联网行为数据、话单数据、WAP日志/WEB日志、互联网网页、投诉文本、短信文本等结构化数据以及非结构数据呈现几何式增长,基于这些数据的挖掘、共享、分析已经成为全球电信运营商转变商业模式的重要资源,目前,全球120家运营商中,已经有48%的企业正在实施大数据战略。
某省移动公司是全省唯一专注移动通信领域的电信运营企业,网络容量1400万户,客户总量超过6000万户。作为“中国移动通信”网络的有机组成部分,该移动公司一直专注于新技术开发和应用,并在大数据平台的建设中走在了最前沿。
要用大数据 先改变基础架构
现阶段,三大运营商还处于数据应用的初级阶段只支持流量经营、智能管道等应用,主要采用基于内部整合数据的分析挖掘手段,未能形成规模并进行商业利用。而旧有系统建设分散,无法实现资源应用共享。数据的分散存储和传统架构的缺陷,无法满足新业务发展要求。
目前国内的三大运营商都在着力整合企业内外部数据,做到内部交易数据与互联网交互数据的融合,由此开展用户行为模式的分析与数据挖掘并支撑各类数据应用,包括:支持精细化营销、支持产品规划和创新、支持网络优化和投资、支持能力开放与合作。长远来看,运营商应建立基于大数据驱动,以消费者为中心、以客户体验为重心的企业运营及组织变革模式,如淘宝将数据化运营贯穿业务全过程,以选品、价格和推送作为淘宝客户体验的三个灵魂。
而现实的IT基础架构则阻碍了电信行业发展大数据的步伐。首先,传统IT系统建设分散,很难实现资源和应用共享。诸如经营分析、信令监测、综合网络分析、不良信息监测以及上网日志留存等大数据系统垂直建设较多,同时,系统建设存在重复建设、应用重复开发、各类专家资源无法共享等情况。
其次,数据分散存储,标准化程度低。要对网络流量大数据进行分析,必须实现数据的集中存储,并有统一的标准。但从目前来看,各大运营商数据系统的数据模型并未统一,跨系统综合分析较为困难,在原有基础之上实现统一管理的难度较高。
最后,以联机事务处理系统On-Line Transaction Processing (OLTP)为核心的传统架构难以满足新业务发展要求,海量的大数据处理需要高度易扩展、高性能的基础架构,先行架构在存储、计算等各个方面都不能满足需求。
架构改变是基础 整体效率是目标
为了推进全网数据流量的精细化经营,提升数据流量经营效益,尤其是挖掘数据价值,开拓新的业务内容和盈利项目,某省移动与浪潮合作搭建大数据平台,建成后该平台用于多个平台数据分析业务。平台会处理每月客户账单,确保每月1日按时为用户提供账单服务,河南移动每年数据符合增长率在15%左右,基础架构完全可以满足扩容的技术需求。
由50台浪潮双路服务器NF5270M3构建Hadoop平台是系统的核心,另外三十台NF5270M3构建数据库处理平台。
网络——容错,高性能
系统采用了全新的IP网络互联架构,有足够的容错能力和性能来支持规模化数据处理。这一设计方案的优点是每台服务器配置两个10GB端口,端口通过冗余绑定方式分别与两台不同的汇聚交换机相连。此外通过高度冗余的三台二层交换机将所有汇聚交换机连接为统一的子网,最大限度的提高系统的冗余度和节点间通信带宽限制。
存储——成本降20%,效率提高3倍
数据存储方案也采用了分布式本地存储方式,采用双路服务器构建,替代原有的MNC小型机加磁盘阵列的方式,建设成本降低了20%以上。新平台可实现海量图片、视频文件的快速存储与查询,数据处理效率提升50%以上。而且,浪潮根据该省移动数据具体需求对大数据系统做了深层次的优化,在存储和网络资源间更均匀地平衡负载,从而将资源利用率提高三倍多。
电信行业的大数据仍然刚刚起步
该移动完成大数据平台建设后,不仅可以为相关企业提供数据分析报告,增加新的企业赢利点,而且可以通过对用户位置信息和指令信息的历史数据和当前信息分析建模,服务公共服务业,指挥交通、应对突发事件和重大活动。
此外还可以对某个时段和某个地点的用户流量和关键影响因素进行分析,洞察结果可为零售商在新店设计和选址、商品促销方式等提供决策支撑,从而帮助零售商更好地洞察客户需求,提升营销业绩。
2014年大数据的普及和运用都达到了前所未有的高度,但仍然仅是一个起步。凭借数据分析来竞争,实现数据价值货币化,这是运营商的终极追求。当一个人拿着手机玩《刀塔传奇》时,用快的软件叫一辆出租车时,无形的数据已经形成了一个流通的气场,这个气场就需要运营山的大数据平台来支持,从这个角度看,运营商的大数据建设还有更远的路要走。
此次同该移动合作的浪潮是中国领先的云计算和大数据方案供应商,也是2014年唯一全面入围三大电信运营商的服务器品牌厂商,在运营商集采中占有30%的份额。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28