京公网安备 11010802034615号
经营许可证编号:京B2-20210330
起底英特尔大数据
继云计算之后,大数据迅速跻身IT领域热词排行榜。至于大数据概念啥的,这里就不多说了,每个人都有每个人的理解,关键是要从海量数据中挖掘出有应有的价值,这也是当下大数据领域的专家、厂商所致力研究的东西。作为全球知名的IT企业,英特尔给人的印象可能更多体现在处理器、网络、SSD方面,但其实它在大数据领域已经由来已久。
那英特尔在大数据领域主要开展哪些工作?比较具象的大致可归结为三条,一是推动开源社区的发展,像人们比较熟知的Hadoop、Spark社区,英特尔都是重要的贡献者;二是通过与业界伙伴合作,完善IA架构上的用户体验;三是基于IA架构进行大数据的优化工作。这部分工作主要由英特尔SSG(Software and Service Group,软件和服务集团)中一个专门针对大数据领域的团队负责。
说完了比较具象的,下面说说比较前瞻性的,这部分主要由英特尔研究院来推动。用英特尔中国研究院院长吴甘沙的话说,他们就像是探子、侦察兵,小股部队负责在前方探路。比如SSG在做Hadoop的时候,研究院已经在研究流处理、图计算、内存计算等;等SSG开始做内存计算、流处理了,研究院已经开始研究一些其他的技术了,比如其现在重点关注的至强+FPGA加速技术。
当然,这些也并非英特尔在大数据领域的全部家底。何以见得?吴甘沙在接受采访时说,最早安迪·格鲁夫在成立研究院的时候对于研究院的职责有着清晰的界定,一到三年内能够进入市场的,就不应该由研究院来做,应该交给SSG。五到七年才进入市场,抑或相对比较远的,或者风险非常大的工作也不应该由研究院来做,应该交给大学。
从他的回答中不难看出,英特尔对于一项技术的布局是有着非常长远的规划的。所以,可能你对英特尔在大数据领域所做的事情还不太了解,或者说英特尔向外界所传递的信息还不够,但其在大数据领域的深厚底蕴是毋庸置疑的,相关案例也有很多。
比如在采访中,英特尔亚太研发有限公司物联网解决方案与产品事业部商务开发经理顾典就举了几个比较典型的应用案例,一个是在交通领域。英特尔和中交兴路合作,在其商用车上部署基于Quark的车辆监管设备,通过该设备采集车上相关传感器的信息,包括驾驶员的驾驶行为、车辆行经路线等,然后传输到后端大数据集群当中做实时分析,最终可以帮助他们节省10%的油耗。
还有一个典型的案例就是优酷,作为国内最大的视频网站之一,其曾经有一个大数据分析的应用程序的性能一直不是特别好、运算速度不是特别快,后来英特尔建议其转到Spark平台,并相应的做了指导、优化,最后的结果是通常需要80分钟的数据处理时间缩短至了5分钟。
至于具体案例还有很多,这里不再一一列举。放眼未来,英特尔在大数据领域的脚步肯定会走得更快。就像前文提到的至强+FPGA就是英特尔面向最近火热的深度学习(Deep Learning)领域所做的尝试。同时,吴甘沙表示,以用户为导向,英特尔将更加关注一些有需求但能力却可能不够的一些场景。比如中小企业的大数据应用问题。
他具体解释说,其实这类场景有很多,包括中小型电商、垂直电商等。举个最简单的例子,一个电商是卖鞋帽衣服的,一个电商可能是卖化妆品的,他们对于用户的定位不一定非常完整、精确。而事实上买这一类化妆品的可能就会买这一类的衣服、鞋帽,它们之间是有相关性的。但因为他们是垂直的,规模又比较小,并没有这样的认识,所以迫切需要和其他的垂直电商和行业伙伴做数据共享和交换。这样问题就来了,一方面他们怕数据失控,另一方面自己也不知道数据值多少钱。所以需要有一些基础保证,第一,数据融合、分析要足够安全,第二需要有一种很好的方式来确定各方的数据价值几何。
还有另外一个场景英特尔一直在做的,就是健康。吴甘沙介绍说,健康相关数据的管理是非常严格的,美国专门有一个条例HIPPA,非常严格地限制数据的交换、流通。这也一定程度上使得在某些生命科学或者医学前沿的进展比较缓慢。比如癌症,经过50年发展,其治愈率只提升了8%。为什么?因为癌症是“长尾病症”不同地方有不同的癌,而且它没有明确的特征。没有足够的样本,导致不同科研院校的研究进展非常慢。有没有可能让各方非常放心的把数据汇聚到一起来做癌症的研究,这也是英特尔非常关注的一个方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16