京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CIO如何轻松玩转移动和云端的大数据
移动,云计算和大数据都被赋予了很多期待,人们希望这些技术能帮助企业提高工作和生产效率,提高决策能力和降低成本。其中最大的希望就是使企业 变得更有竞争力,但是对于企业的IT部门,合规团队来说,这些新技术常常会增加复杂性,由于大量的数据正在移动到不断增长的终端,其中包括各种移动设备和 第三方托管服务,因此失去了对成本的控制,甚至还增加了成本。不过,办法总比困难多,可以用规范信息元数据的新方法来克服这些挑战。
如果IT系统不能完全清楚存在什么数据以及各种不同类型的信息所在的位置,那么它就不能确保合适的人在合适的时间的合适的访问权限,也肯定不能 充分地免遭破坏和盗窃,或者不能按照新隐私法律的要求删除隐私信息。随着需要收集的数据的数量的增长,电子披露成本也随之猛增。甚至企业用户会遭受他们日 常活动所需的信息和大数据分析所需要的数据变得更难找到和管理的情况,从而降低工作效率,事倍功半,同时消弱提高决策能力的期望。
要持久地掌控迅速发展的数据存储,企业需要有长远而深刻的洞见和规划,适用于所有的数据,无论由谁创造,无论存于哪里,无论由谁分享。不幸的 是,大部分企业觉得这需要大笔的花费,将其视为一项艰巨的挑战。然而,事实上有一个非常简单和具有成效的方法可以实现,那就是你愿意持续地去做,这样会比 什么都不做要好得多。
该策略是基于将典型的使用在结构化数据库的相同的元数据标准化应用到企业内部部署和云端的所有其他数据上面,包括所有信息类型(电子邮件,文本 文件和SMS,社交媒体等),文档(文字处理,电子表格,演示文稿等),甚至还包括日志文件。在某些受管制的行业,如金融服务,元数据标准化还可以应用到 语音通信数据,如通话录音和语音邮件文件。
比如说,你有一个主要的“工人”ID数据库(例如,员工,在飞机上的外部职员)。使用这个ID来标记每个文档,信息和数据库,并记录由谁创建, 由谁更改,由谁删除,这使得在各个平台的一系列业务进程以和需求相符的数据传回特定人员成为可能,不管数据是否是经过云存储的方式或者在移动设备之间几经 周折。仅这一步也能有助于使得电子披露更有效率,使数据保护和隐私保护变得容易。然后它将还可能确定每个个体其所有数据源(应用程序,共享服务,本地,云 端等)完整的“数据足迹”。
标准化元数据不仅使查找和检索数据更容易一些,还给大数据分析项目带来重要价值。例如,如果你也开始持续标记数据,其中数据即包括客户数据,也 包括产品数据,而且这些数据还分别拥有客户ID和产品ID,你自然会加入分析价值,不管是否和判定公司产品(尽管公司可能还没有产品)的市场需求,为能够 在创收产品中做出贡献的员工提高支持力度,确定客户沟通和客户投资之间的关系,以及很多其他现在实现起来可能有困难或者根本不可能实现的机会这些相关。使 数据丰富起来,降低或消除数据的单一化,调节,映射以及其他和时间资源非常相关的精细的手动工作将会有积极的影响。
让我们来看看另外一个重要的使用案例。对于CIO来说,越过防火墙迁移数据加剧了已有的挑战,这一挑战就是从企业中大约75%的杂乱的碎片信息 中区分出有价值的信息。如果你想实现无论数据在哪里,你都能管理好数据,如果你想摆脱数据中心,将数据有效率地迁移到云端,那么确定当前数据中心中有什么 数据,哪些是重要的,哪些是没有任何价值的,这些至关重要。将标准化元数据应用到企业的所有数据中能够显著地提高鉴定重要信息的能力,连同业务,法律,记 录,合规性和安全价值,所有这些开始让企业的暗数据重焕光彩。
不是革命,而是演进
你使用的标签能显著地改善数据管理,支持电子披露,法规遵从,数据碎片处理,网络安全和威胁响应这些方面,使之变得不再不可逾越。如上所述,使 用员工ID,客户ID和产品ID可能是一个很好的起点。关键是创建足够的有用标签,但是标签也不能太多,那样会适得其反,标签创建完后,将其应用到公司所 能影响或控制的存在于所有地方的所有类型的数据。
另外,你很可能希望随着时间的推移,不断发展变化的系统和用户行为应用标准化,而不破坏或改变它。实现这一想法的一个策略是随着IT自然生命周 期发展。每次你改变应用程序,平台或服务器的时候,你需要嵌入标准化元数据。最终,使用标准化元数据可能会变成习惯,系统化和普遍性。然后,一旦产生价值 而且你已经证明了其投资回报率,你就可以接着改变传统的系统了。
通过规范方法的元数据标准化,你可以让你的企业更有效地利用新兴的移动,云计算和大数据的机会。有了更全面的知识和对信息的把握,你将会为企业的所有业务流程,包括创收,可持续发展,控制风险,法规遵从,网络安全和电子披露等方面带来巨大的机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08