京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CIO如何轻松玩转移动和云端的大数据
移动,云计算和大数据都被赋予了很多期待,人们希望这些技术能帮助企业提高工作和生产效率,提高决策能力和降低成本。其中最大的希望就是使企业 变得更有竞争力,但是对于企业的IT部门,合规团队来说,这些新技术常常会增加复杂性,由于大量的数据正在移动到不断增长的终端,其中包括各种移动设备和 第三方托管服务,因此失去了对成本的控制,甚至还增加了成本。不过,办法总比困难多,可以用规范信息元数据的新方法来克服这些挑战。
如果IT系统不能完全清楚存在什么数据以及各种不同类型的信息所在的位置,那么它就不能确保合适的人在合适的时间的合适的访问权限,也肯定不能 充分地免遭破坏和盗窃,或者不能按照新隐私法律的要求删除隐私信息。随着需要收集的数据的数量的增长,电子披露成本也随之猛增。甚至企业用户会遭受他们日 常活动所需的信息和大数据分析所需要的数据变得更难找到和管理的情况,从而降低工作效率,事倍功半,同时消弱提高决策能力的期望。
要持久地掌控迅速发展的数据存储,企业需要有长远而深刻的洞见和规划,适用于所有的数据,无论由谁创造,无论存于哪里,无论由谁分享。不幸的 是,大部分企业觉得这需要大笔的花费,将其视为一项艰巨的挑战。然而,事实上有一个非常简单和具有成效的方法可以实现,那就是你愿意持续地去做,这样会比 什么都不做要好得多。
该策略是基于将典型的使用在结构化数据库的相同的元数据标准化应用到企业内部部署和云端的所有其他数据上面,包括所有信息类型(电子邮件,文本 文件和SMS,社交媒体等),文档(文字处理,电子表格,演示文稿等),甚至还包括日志文件。在某些受管制的行业,如金融服务,元数据标准化还可以应用到 语音通信数据,如通话录音和语音邮件文件。
比如说,你有一个主要的“工人”ID数据库(例如,员工,在飞机上的外部职员)。使用这个ID来标记每个文档,信息和数据库,并记录由谁创建, 由谁更改,由谁删除,这使得在各个平台的一系列业务进程以和需求相符的数据传回特定人员成为可能,不管数据是否是经过云存储的方式或者在移动设备之间几经 周折。仅这一步也能有助于使得电子披露更有效率,使数据保护和隐私保护变得容易。然后它将还可能确定每个个体其所有数据源(应用程序,共享服务,本地,云 端等)完整的“数据足迹”。
标准化元数据不仅使查找和检索数据更容易一些,还给大数据分析项目带来重要价值。例如,如果你也开始持续标记数据,其中数据即包括客户数据,也 包括产品数据,而且这些数据还分别拥有客户ID和产品ID,你自然会加入分析价值,不管是否和判定公司产品(尽管公司可能还没有产品)的市场需求,为能够 在创收产品中做出贡献的员工提高支持力度,确定客户沟通和客户投资之间的关系,以及很多其他现在实现起来可能有困难或者根本不可能实现的机会这些相关。使 数据丰富起来,降低或消除数据的单一化,调节,映射以及其他和时间资源非常相关的精细的手动工作将会有积极的影响。
让我们来看看另外一个重要的使用案例。对于CIO来说,越过防火墙迁移数据加剧了已有的挑战,这一挑战就是从企业中大约75%的杂乱的碎片信息 中区分出有价值的信息。如果你想实现无论数据在哪里,你都能管理好数据,如果你想摆脱数据中心,将数据有效率地迁移到云端,那么确定当前数据中心中有什么 数据,哪些是重要的,哪些是没有任何价值的,这些至关重要。将标准化元数据应用到企业的所有数据中能够显著地提高鉴定重要信息的能力,连同业务,法律,记 录,合规性和安全价值,所有这些开始让企业的暗数据重焕光彩。
不是革命,而是演进
你使用的标签能显著地改善数据管理,支持电子披露,法规遵从,数据碎片处理,网络安全和威胁响应这些方面,使之变得不再不可逾越。如上所述,使 用员工ID,客户ID和产品ID可能是一个很好的起点。关键是创建足够的有用标签,但是标签也不能太多,那样会适得其反,标签创建完后,将其应用到公司所 能影响或控制的存在于所有地方的所有类型的数据。
另外,你很可能希望随着时间的推移,不断发展变化的系统和用户行为应用标准化,而不破坏或改变它。实现这一想法的一个策略是随着IT自然生命周 期发展。每次你改变应用程序,平台或服务器的时候,你需要嵌入标准化元数据。最终,使用标准化元数据可能会变成习惯,系统化和普遍性。然后,一旦产生价值 而且你已经证明了其投资回报率,你就可以接着改变传统的系统了。
通过规范方法的元数据标准化,你可以让你的企业更有效地利用新兴的移动,云计算和大数据的机会。有了更全面的知识和对信息的把握,你将会为企业的所有业务流程,包括创收,可持续发展,控制风险,法规遵从,网络安全和电子披露等方面带来巨大的机遇。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26