
DT时代,为大数据安全提供永不缺席的保护
大数据之所以拥有如此大的魅力与诱惑力,是因为它已经从搜索引擎、电子商务,延伸到与我们息息相关的生活与工作,例如你在银行开户填写的个人信息,或是医院就诊所留下的医疗档案等私密且深度关联我们的数据。你有没有想过,若是这些数据不翼而飞或被他人所窃,可不是简单的几个骚扰电话这么简单,或许在数据之后所关联、隐藏的价值就被他人所利用。
我们站在企业/单位的的角度来看,身边的大数据触角也早已深入到企业管理、公司战略等具有决定性高度的层次。要是这些数据丢失,且不说丢掉订单失去客户,企业机密数据一旦泄露,对于企业来讲,那将损失惨重。在竞争如此激烈,手段防不胜防的商业市场中,数据隐私,大数据的安全与脱敏,不可小觑。
大数据,这个既严肃又活跃的标志赫然醒目,它蕴含的商业价值无可限量,但财富有多大背后的风险就有多深。同时,大数据所涉及的范围不仅将身边的事物所包含,以至于你的企业,整个社会,乃至全球,数据风暴可算得上是席卷开来,我们也看到不少企业因为大数据做强做大,也因此带来财富与地位。在各行各业因大数据而走向信息化高峰的同时,“数据脱敏”、“数据保护”成为了这个时代,IT圈、商业圈、政府机构等最为关心、关注的焦点。谁能保证我的数据安全,谁又能保证海量大数据的安全,我们既需要承载大数据的平台与技术,还需要在上面扣上一顶“安全帽”。
数据来了,你准备好了吗?
一般而言,大数据的来源包括文档、照片、视频以及传感器中所能捕捉到的一切数据信息。同时,我们身边还存在着很多不定性的非结构化数据,例如针对特定用户的分析数据、网络社交、媒体播报等。对于这些结构化和非结构化的数据来说,我们不管它来自于企业内部还是外部,收集存储、处理治理、分析挖掘、以及数据创新都是对于企业的考验,面对海量数据的到来,能不能挖出价值,还需一个“高大上”的数据托盘,这个托盘我们叫它“大数据平台”。
很多企业已经面临大数据的到来与量出,也清楚地知道大数据所蕴藏的价值非常可观,在如今的商业环境下,得数据者得用户,得数据者得发展。但问题也随之到来,大数据来了,能接受并承载它的“托盘”有没有准备好呢?
在数据收集过程中,我们应该在获得廉价的以原始格式收集、存储数据后,再去考虑如何利用、使用它。也就是说,在数据收集之后,我们要在现如今的数据分析市场中,找到先进的、合理的数据分析技术和计算能力,其中Hadoop等技术从陌生到为大家熟知,现已经成功地在大数据分析中被广泛采用和实施。
数据安全,是重中之重
当你开始使用大数据时,你会发现,把大数据分析作为一个完全独立的功能是行不通的。大数据不仅仅是数据量多,它需要针对数据所做的分析处理更多,这不得不与大数据技术相结合起来。
随着数据分析技术呈爆炸式的增长,市场上已经充斥着各种便捷的分析产品。尽管这说明了企业够重视,市场够迅速,但也确实导致了大数据分析平台的鱼龙混杂,并使得找出解决企业某项特定问题的产品变得更加复杂和艰难。一些技术是普适性的,而另一些却只在特定条件下适用。因此,每家企业都需要找出满足自身需求的,且能够满足所需的技术组合。
处理海量数据的“托盘”——大数据分析平台,对于行业内部的人来说,最基础的需求就是处理海量数据,其中非常重要的一点就是如何保证安全的处理,明略数据提出了两个大数据平台的安全认知,非常值得我们借鉴:
(1)企业私密的数据与其他外来数据都储存于一个平台种,对于该平台的数据安全性要求就极高。我们需要的不仅是网络层的安全,还需要数据层的安全措施。(2)很多企业存在数据交易的需求,对于数据的购买和销售过程中,大数据分析平台需要具备数据脱敏、传输加密等安全措施。在防范数据被二次交易方面,数据平台应做到数据清洗与防护措施。
技术与防范 有且都要够硬
对于大多数企业来说,完全熟知大数据分析技术需要实质性的人才引进和技术培养,同时对于数据安全的把控更应该是大数据处理中核心的战略组成部分。技术的日益提高可以从大数据厂商来推动与操作,但安全这根“弦”,不可松懈。高效且可靠的大数据分析平台,在确保数据安全的同时,能够做到数据的深度挖掘,是面对大数据最好的选择与做法。
明略数据技术合伙人兼MDP产品经理杨威认为:安全是伴随着信息化时代不可忽视的问题,2014年有10亿人隐私数据被泄露,而安全事故远不止数据泄露。明略数据基于Apache Hadoop的Mininglamp Data Platform (MDP)可以提供海量数据存储和多种高性能计算框架,同时提供了完整的安全保障体系。
非常值得一提的是,明略数据MDP的安全特性,值得我们借鉴和学习,它可以全方面覆盖网络安全、主机安全、服务安全、数据安全。尤其是独立的账户管理体系,以及细粒度的数据和服务功能的权限控制,能够对用户行为做到安全审计。如今,我们所使用的数据非常敏感,隐私问题引起了大家的重视,在明略数据的数据安全宗旨下,MDP通过数据脱敏等手段,确保了数据交易过程中的安全与可靠。
大数据平台承载了我们所有的大数据信息,同时平台上也承载了企业所有的关键业务,搭建高安全、高可靠的大数据平台是存储/治理及析/挖掘大数据的前提。
某公安部客户证言:“明略数据的发展愿景与我们非常一致,通过长期的合作配合,明略数据过硬的大数据技术,工程师们对国家安全的重视程度以及那份对社会的责任使我非常感动”
公安局在运用大数据的需求上非常之大,任何基础工作与刑侦破案都需要大数据的辅助来帮助拓展线索。当前能够提高社会防控能力和水平,各个部门要培养数据转化,要让数据说话,要让数据辅助我们的企业决策。
信息经济正朝着创新带动、智能转型、强化基础、绿色发展、人才为本的愿景前进。在前进的道路上,我们已经看到若干创新发展正在进行,例如金融业在落实风险防控基础上加强产品创新、服务创新、渠道创新。
挖掘与安全这两个主题一直是大数据发展的重要条件。过去,技术承载的信息价值有限,而随着大数据产业发展,数据背后的信息价值含金量猛增。现在,大数据分析平台已经具备高安全、高可靠的深度数据挖掘能力,在行业竞争中,使用大数据,用好大数据分析平台,让数据给你创造价值。同时,所利用的数据也已经不再是产业发展中的附属品,它在许多企业里还成为了业务的主体。越来越多的企业将驾驭大数据策略制定为核心战略之一,用以提升业务水平。在准备好安全、可用的大数据分析平台后,让大数据来的更猛烈一些吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01