京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据面临的挑战复杂艰巨
“未来的信息世界是"三分技术,七分数据",得数据者得天下。”在近日于北京召开的大数据与数据科学进展主题论坛上,中国工程院院士陈鲸表示,继实验科学、理论科学、计算机科学之后,以大数据为代表的数据密集型科学将成为人类科学研究的第四大范式。
“大数据中蕴藏着关乎社会动向、市场变化、科技发展、国家安全的重要战略资源。”陈鲸认为,大数据会为国内处理器芯片自主研发行业提供重大机遇,也会有更多应用数据技术的新兴公司和经营模式出现。
不过,虽然大数据的前景灿烂,但在陈鲸看来,其面临的挑战也非常复杂和艰巨。
首先便是数据的异构性和不完备性。陈鲸解释说,大数据来源多样,且越来越多地分散在不同的管理系统中。据不完全统计,目前采集的数据85%以上是非结构化和半结构化数据,因此不能用已有的简单数据结构来描述。而传统关系数据库又无法高效处理这些复杂数据结构表示的数据。数据的不完备性主要是指所获取的大数据常常包含一些不完整信息和错误数据。因此,在进行大数据分析处理之前,必须对这种数据的不完备性进行有效处理。
另一个严峻挑战便是大数据处理的时效性。随着时间的流逝,大数据中所蕴涵的知识价值也随之衰减,其价值与时效性密切相关。陈鲸表示,一般数据样本量越大,分析处理时间会越长,但在许多情况下,大数据用户要求立即获得数据分析结果。这就要求为复杂结构的数据建立合适的索引结构,并要求索引结构的设计简单、高效,且在数据模式发生变化时能很快进行适应性调整。
陈鲸也提到了大数据应用中的安全与隐私保护问题。“据当前所掌握的资料分析:人们在互联网上的一言一行,基本上都掌握在互联网商家手中。例如,淘宝知道用户的购物偏好,腾讯知道用户的好友联络情况,百度知道用户的检索习惯等。而目前,中国还没有专门的法律法规来界定用户隐私。”另外,“如何在大数据环境下确保信息共享的安全性?如何为用户提供更为精细的数据共享安全控制策略?这些问题都值得深入研究”。
高能耗则是陈鲸关注的制约大数据快速发展的另一个瓶颈。据2012年的资料显示:谷歌数据中心的年电功率约为3亿瓦,Facebook为6000万瓦左右。最令人惊讶的是,在这些巨大能耗中,实际只有6%~12%的能量是真正用于响应用户查询请求的,绝大部分电能则是被用来确保系统服务器处于正常待机状态,以应对突如其来的用户查询网络流量高峰。
对此,陈鲸建议,可以考虑采用新型低功耗硬件以及建立计算核心与二级缓存的直通通道,从应用、编译器、体系结构等多方面协同优化,另外就是引入可再生新能源。
陈鲸还谈到了大数据管理易用性方面的挑战,“复杂的分析过程和难以理解的分析结果会制约各行各业从大数据中获取知识的能力”。他认为,大数据分析结果的可视化呈现,将是大数据管理易用性方面要解决的重要问题。
陈鲸同时强调,我国亟待提出适合国情的大数据发展战略和技术路线。“大数据研发计划是抢占信息技术发展制高点的重大举措,将解决数据爆炸性增长带来的管控和利用难题,同时改进对大数据的获取、管理、挖掘和利用能力,实现数据到知识、知识到决策、决策到行动的快速转化,推动人类社会进一步向智能化迈进。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01