京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的大变革
在云计算仍处于“云里雾里”而亟待落地的今天,IT的浩瀚天空中突然传来了天使的号角声——大数据时代来了!大数据,开启了一个彻头彻尾的变革年代,更开启了一个蕴含无穷多机会的年代。谁能够“号准”大数据时代的“脉搏”,谁就能够在全球IT业的新一轮角逐中独领风骚。
令人充满想象的大数据,究竟“大”在何处?
今天,我们再也不能用狭隘的视角来审视大数据了。因为今天的大数据,不仅体现为数据量的惊人增长,更前所未有地引入了正在不断扩展中的数据类型。从量的增长来看,IDC报告显示,未来10年全球大数据将增加50倍。而刚刚过去的2011年,就产生了1.8ZB(1.8万亿GB)的大数据,这相当于每个美国人按每分钟发3条微博的速度,不停发布2.6976万年。与此同时,社会上的各行各业,从电信、IT业,到金融、证券、保险、航空、酒店服务业等,地球上的各种存在,从每个人到每棵树、每朵花乃至每粒沙子,无一例外地都在成为大数据的生成者。在量和面上的双重积累,让我们不难想象和接受数据大爆炸的现实——2020年的全球数据使用量将达到35.2ZB(1ZB=10亿TB)。
犹如一座富矿的大数据,究竟该如何“开采”?
这是一个令人着迷的问题,因为与正确答案相伴的将是谁都渴望的巨大商业成功。当前,伴随着变革的发生,传统的互联网企业已经站在了大数据时代的最前沿。作为探索的先锋,他们能否笑到最后,是否会成为“先烈”?这一问题尽管很难回答,但至少为成功的觊觎者提供了充分的借鉴和参考。
作为后PC时代的四大巨头,Facebook、谷歌、苹果、亚马逊正在成为大数据的拥有者和使用者。在自觉或不自觉间,Facebook已然成为业界第一个生成大数据的“巨鳄”,而其他三巨头仍在努力中。苹果依靠操作系统和颠覆性的终端,正在努力打造大数据的生成之地;谷歌主要依靠操作系统、搜索引擎和“Google+”平台整合终端产品,以储备可以利用的大数据;亚马逊作为云计算的最早倡导者之一,则通过网络平台、云计算平台和阅读终端,期望建立起一个电子商务垂直领域的大数据汇集地。虽然巨头们的策略各有不同,但利用种种手段整合碎片化的数据进而加以利用的趋势,已经再明显不过了。
相比这四大巨头,电信运营商的探索才刚刚起步。“日内瓦的电信运营商,正在针对市民活动的可视化展开研究。”天云科技副总雷涛在近日举行的云计算大会云基地专场上指出,“通过在用户手机上安装传感器,就能够记录下大量的位置信息,从而使得市民活动可视化,这对建立一个智慧城市,进行人口规划、区域规划都具有重要意义。”事实上,一个个再简单不过的位置信息背后,隐藏着巨大的、待挖掘的价值,这个价值对于各行各业都具有关键的作用。例如,房地产开发商就很渴望知道高端用户最频繁出入的区域,而这些区域就是商业地产的最佳候选地。而除了位置信息外,电信运营商能够挖掘的信息和数据,仍有无穷无尽的空间,包括了用户喜好、消费能力等等。
在企业的自发行为以外,国家级的战略支持已经浮出水面。美国,作为ICT强国,嗅觉最为敏锐。2012年3月29日,奥巴马政府公布了“大数据研发计划”,目标在于改进当前人们从海量和复杂的数据中获取知识的能力,而这是美国继高速网络和超级计算中心之后的另一个重大科技项目。据悉,首批共有6个联邦部门宣布投资2亿美元,共同提高收集、储存、保留、管理、分析和共享海量数据所需核心技术的先进性,并形成合力,同时增加大数据技术开发和应用所需人才的供给。显然,先行一步的美国,已经把大数据当作了其ICT产业再度在全球崛起的重要契机。在找准了崛起的方向之后,富有行动力的美国,自然就会毫不拖泥带水地实施下去。
大数据,正在撬动全世界的神经,无论是国家、企业,还是每一个独立存在的个人,都将成为大数据时代的贡献者和受益者。但问题是,你准备好了吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01