
大数据在电信行业的应用
电信与媒体市场调研公司Informa Telecoms & Media在2013年的调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务。该调研公司表示,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右,成为运营商的一项战略性优势。可见,由流量经营进入大数据运营已成为大势所趋。
电信运营商拥有多年的数据积累,拥有诸如财务收入、业务发展量等结构化数据,也会涉及到图片、文本、音频、视频等非结构化数据。从数据来源看,电信运营商的数据来自于涉及移动语音、固定电话、固网接入和无线上网等所有业务,也会涉及公众客户、政企客户和家庭客户,同时也会收集到实体渠道、电子渠道、直销渠道等所有类型渠道的接触信息。整体来看,电信运营商大数据发展仍处在探索阶段。
目前国内运营商运用大数据主要有五方面:(1)网络管理和优化,包括基础设施建设优化和网络运营管理和优化;(2)市场与精准营销,包括客户画像、关系链研究、精准营销、实时营销和个性化推荐;(3)客户关系管理,包括客服中心优化和客户生命周期管理;(4)企业运营管理,包括业务运营监控和经营分析;(5)数据商业化指数据对外商业化,单独盈利。
第一方面:网络管理和优化。此方向包括对基础设施建设的优化和网络运营管理及优化。
(1)基础设施建设的优化。如利用大数据实现基站和热点的选址以及资源的分配。运营商可以通过分析话单和信令中用户的流量在时间周期和位置特征方面的分布,对2G、3G的高流量区域设计4G基站和WLAN热点;同时,运营商还可以对建立评估模型对已有基站的效率和成本进行评估,发现基站建设的资源浪费问题,如某些地区为了完成基站建设指标将基站建设在人际罕至的地方等。
(2)网络运营管理及优化。在网络运营层面,运营商可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率。
利用大数据技术实时采集处理网络信令数据,监控网络状况,识别价值小区和业务热点小区,更精准的指导网络优化,实现网络、应用和用户的智能指配。由于用户群的不同,不同小区对运营商的贡献也不同。运营商可以将小区的数据进行多维度数据综合分析,通过对小区VIP用户分布,收入分布,及相关的分布模型得到不同小区的价值,再和网络质量分析结合起来,两者叠加一起,就有可能发现某个小区价值高,但是网络覆盖需要进一步提升,进而先设定网络优化的优先级,提高投资效率。
第二方面,市场与精准营销。此方向包括客户画像、关系链研究、精准营销、实时营销和个性化推荐。
(1)客户画像。运营商可以基于客户终端信息、位置信息、通话行为、手机上网行为轨迹等丰富的数据,为每个客户打上人口统计学特征、消费行为、上网行为和兴趣爱好标签,并借助数据挖掘技术(如分类、聚类、RFM等)进行客户分群,完善客户的360度画像,帮助运营商深入了解客户行为偏好和需求特征。
(2)关系链研究。运营商可以通过分析客户通讯录、通话行为、网络社交行以及客户资料等数据,开展交往圈分析。尤其是利用各种联系记录形成社交网络来丰富对用户的洞察,并进一步利用图挖掘的方法来发现各种圈子,发现圈子中的关键人员,以及识别家庭和政企客户;或者分析社交圈子寻找营销机会。如在一个行为同质化圈子里面,如果这个圈子大多数为高流量用户,并在这个圈子中发现异网的用户,我们可以推测该用户也是高流量的情况,便可以通过营销的活动把异网高流量的用户引导到自己的网络上,对其推广4G套餐,提升营销转化率。总之,我们可以利用社交圈子提高营销效率,改进服务,低成本扩大产品的影响力。
(3)精准营销和实时营销。运营商在客户画像的基础上对客户特征的深入理解,建立客户与业务、资费套餐、终端类型、在用网络的精准匹配,并在在推送渠道、推送时机、推送方式上满足客户的需求,实现精准营销。如我们可以利用大数据分析用户的终端偏好和消费能力,预测用户的换机时间尤其是合约机到期时间,并捕捉用户最近的特征事件,从而预测用户购买终端的真正需求,通过短信、呼叫中心、营业厅等多种渠道推送相关的营销信息到用户手中。
(4)个性化推荐。利用客户画像信息、客户终端信息、客户行为习惯偏好等,运营商可以为客户提供定制化的服务,优化产品、流量套餐和定价机制,实现个性化营销和服务,提升客户体验与感知;或者在应用商城实现个性化推荐,在电商平台实现个性化推荐,在社交网络推荐感兴趣的好友。
第三方面,客户关系管理。此方面包括客服中心优化和客户生命周期管理。
(1)客服中心优化。客服中心是运营商和客户接触较为频繁的通道,因此客服中心拥有大量的客户呼叫行为和需求数据。我们可以利用大数据技术可以深入分析客服热线呼入客户的行为特征、选择路径、等候时长,并关联客户历史接触信息、客户套餐消费情况、客户人口统计学特征、客户机型等数据,建立客服热线智能路径模型,预测下次客户呼入的需求、投诉风险以及相应的路径和节点,这样便可缩短客服呼入处理时间,识别投诉风险,有助于提升客服满意度;另外,也可以通过语义分析,对客服热线的问题进行分类,识别热点问题和客户情绪,对于发生量较大且严重的问题,要及时预警相关部门进行优化。
(2)客户关怀与客户生命周期管理。客户生命周期管理包括新客户获取、客户成长、客户成熟、客户衰退和客户离开等五个阶段的管理。在客户获取阶段,我们可以通过算法挖掘和发现高潜客户;在客户成长阶段,通过关联规则等算法进行交叉销售,提升客户人均消费额;在客户成熟期,可以通过大数据方法进行客户分群(RFM、聚类等)并进行精准推荐,同时对不同客户实时忠诚计划;在客户衰退期,需要进行流失预警,提前发现高流失风险客户,并作相应的客户关怀;在客户离开阶段,我们可以通过大数据挖掘高潜回流客户。国内外运营商在客户生命周期管理方面应用的案例都比较多。如SK电讯新成立一家公司SK Planet,专门处理与大数据相关的业务,通过分析用户的使用行为,在用户做出离开决定之前,推出符合用户兴趣的业务,防止用户流失;而T-Mobile通过集成数据综合分析客户流失的原因,在一个季度内将流失率减半。
第四方面,企业运营管理。可以分为业务运营监控和经营分析。
(1)业务运营监控分可以基于大数据分析从网络、业务、用户和业务量、业务质量、终端等多个维度为运营商监控管道和客户运营情况。构建灵活可定制的指标模块,构建QoE/KQI/KPI等指标体系,以及异动智能监控体系,从宏观到微观全方位快速准确地掌控运营及异动原因。
(2)经营分析和市场监测。我们可以通过数据分析对业务和市场经营状况进行总结和分析,主要分为经营日报、周报、月报、季报以及专题分析等。过去,这些报告都是分析师来撰写。在大数据时代,这些经营报告和专题分析报告均可以自动化生成网页或者APP形式,通过机器来完成。数据来源则是企业内部的业务和用户数据,以及通过大数据手段采集的外部社交网络数据、技术和市场数据。分析师转变为报告产品经理,制定报告框架、分析和统计维度,剩下的工作交给机器来完成。
第五方面,数据商业化。数据商业化指通过企业自身拥有的大数据资产进行对外商业化,获取收益。国内外运营商的数据商业化都处于探索阶段,但相对来说,国外运营商在这方面发展的更快一些。
(1)对外提供营销洞察和精准广告投放。
(2)基于大数据监测和决策支撑服务。
总的来看,电信行业的大数据依然处于探索阶段,未来几年,无论是内部大数据应用还是外部大数据商业化都有很大的成长空间。但电信行业大数据最大的障碍是数据孤岛效应严重,由于国内运营商的区域化运营,电信企业的数据分别存储在各地区分公司,甚至分公司不同业务的数据都有可能没打通。而互联网和大数据则是没有边界。日本最大的移动通信运营商NTT Docomo 2010年以前就开始着手大数据运用的规划,NTT Docomo相对国内运营商有一个很大的优势是全国统一的数据收集、整合形式,因此NTT Docomo可以很轻易拿到全国的系统数据。Docomo不但着重搜集用户本身的年龄、性别、住址等信息,而且制作精细化的表格,要求用户办理业务填写更详细信息。对于国内电信运营商,要真正的利用大数据,数据的统一和整合是最为重要的一步。我们已经看到中国移动已经开始着手准备这方面的工作,相信未来几年,在互联网企业的竞争压力下,中国的电信行业大数据将发展的更快,变革会更彻底。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29