京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据Hadoop环境网络特性
Hadoop集群中的各节点通过网络连接起来,而且MapReduce中的以下过程会在网络中传输数据。
(1) 写数据。当向HDFS写入初始数据或者大块数据时,会发生数据写入过程。写入的数据块需要备份到其他节点,需要在网络中传输这些数据。
(2) 作业执行。
1) Map阶段。在算法的Map阶段,几乎不需要在网络中传输数据。在Map开始阶段,当HDFS数据没有本地性(数据块不在本地存储,需要从其他节点拷贝)时,才需在网络中传输数据。
2) Shuffle阶段。这是作业执行中在网络中传输数据的阶段,数据传输的程度依赖于作业。Mapper阶段的输出内容,会在这个时候传输到Reducer进行排序。
3) Reduce阶段。因为Reducer需要的数据已经从Shufle阶段传来,所以此阶段不需要网络传输数据。
4) Output复制。MapReduce的输出作为文件存储在HDFS上。当将输出结果写入HDFS时,产生的备份会在网络中传输。
(3) 读数据。当应用程序如网站、索引或者SQL数据库从HDFS读取数据时,会发生数据读取的过程。
另外,网络对Hadoop的控制层非常重要,比如HDFS的信令和运维操作,以及MapReduce架构都受到网络影响。
五种网络特性
针对Hadoop集群环境下的网络环境进行测试,测试结果显示,一个有弹性的网络对Hadoop集群非常重要;对Hadoop集群具有重要影响的网络特性,以其影响程度从大到小依次排序为:网络可用性和弹性、Burst流量突发处理和队列深度、网络过载比、Datanode网络接入和网络延迟。
(1) 网络可用性和弹性。要部署一个高冗佘性和可扩展的网络,支持Hadoop集群的增长。在Datanode之间部署多条链路的技术要比那些有单点失效或两点失效的技术要好。交换机和路由器已经在业界被证明能够为服务器提供网络可用性。
(2) Burst流量突发处理和队列深度。HDFS的有些操作和MapReduce Job会产生突发流量,如向HDFS加载文件或者把结果文件写入HDFS都需要通过网络。网络如果处理不了突发流量,就会丢弃数据包,所以适当的缓存可以缓解突发流量的影响。确保选择使用缓存和队列的交换机和路由器,来有效处理流量突发。
(3) 网络过载比。一个好的网络设计需要考虑到网络中关键节点的拥塞情况。一个ToR交换机从服务器接收20Gbps的数据,但是只有2个1Gbps的上联口会造成数据包丢失(10:1的过载比),严重影响集群的性能。过度配置的网络的价格又非常昂贵。一般情况下,服务器接入层可以接受的过载比在4:l左右,接入层和汇聚层之间,或者核心层的过载比在2:l左右。
(4) Datanode网络接入。要基于集群工作负荷来推荐带宽配置。一般集群中的节点有1到2根1GB的上联12.是否选择10Gbps的服务器要权衡价格和性能。
(5) 网络延迟。交换机和路由器延迟的变化对集群性能的影响有限。相比网络延迟,应用层延迟对任务的影响比例更大。但是网络的延迟会对应用系统造成潜在的影响,例如造成不必要的应用切换等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27