京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据Hadoop环境网络特性
Hadoop集群中的各节点通过网络连接起来,而且MapReduce中的以下过程会在网络中传输数据。
(1) 写数据。当向HDFS写入初始数据或者大块数据时,会发生数据写入过程。写入的数据块需要备份到其他节点,需要在网络中传输这些数据。
(2) 作业执行。
1) Map阶段。在算法的Map阶段,几乎不需要在网络中传输数据。在Map开始阶段,当HDFS数据没有本地性(数据块不在本地存储,需要从其他节点拷贝)时,才需在网络中传输数据。
2) Shuffle阶段。这是作业执行中在网络中传输数据的阶段,数据传输的程度依赖于作业。Mapper阶段的输出内容,会在这个时候传输到Reducer进行排序。
3) Reduce阶段。因为Reducer需要的数据已经从Shufle阶段传来,所以此阶段不需要网络传输数据。
4) Output复制。MapReduce的输出作为文件存储在HDFS上。当将输出结果写入HDFS时,产生的备份会在网络中传输。
(3) 读数据。当应用程序如网站、索引或者SQL数据库从HDFS读取数据时,会发生数据读取的过程。
另外,网络对Hadoop的控制层非常重要,比如HDFS的信令和运维操作,以及MapReduce架构都受到网络影响。
五种网络特性
针对Hadoop集群环境下的网络环境进行测试,测试结果显示,一个有弹性的网络对Hadoop集群非常重要;对Hadoop集群具有重要影响的网络特性,以其影响程度从大到小依次排序为:网络可用性和弹性、Burst流量突发处理和队列深度、网络过载比、Datanode网络接入和网络延迟。
(1) 网络可用性和弹性。要部署一个高冗佘性和可扩展的网络,支持Hadoop集群的增长。在Datanode之间部署多条链路的技术要比那些有单点失效或两点失效的技术要好。交换机和路由器已经在业界被证明能够为服务器提供网络可用性。
(2) Burst流量突发处理和队列深度。HDFS的有些操作和MapReduce Job会产生突发流量,如向HDFS加载文件或者把结果文件写入HDFS都需要通过网络。网络如果处理不了突发流量,就会丢弃数据包,所以适当的缓存可以缓解突发流量的影响。确保选择使用缓存和队列的交换机和路由器,来有效处理流量突发。
(3) 网络过载比。一个好的网络设计需要考虑到网络中关键节点的拥塞情况。一个ToR交换机从服务器接收20Gbps的数据,但是只有2个1Gbps的上联口会造成数据包丢失(10:1的过载比),严重影响集群的性能。过度配置的网络的价格又非常昂贵。一般情况下,服务器接入层可以接受的过载比在4:l左右,接入层和汇聚层之间,或者核心层的过载比在2:l左右。
(4) Datanode网络接入。要基于集群工作负荷来推荐带宽配置。一般集群中的节点有1到2根1GB的上联12.是否选择10Gbps的服务器要权衡价格和性能。
(5) 网络延迟。交换机和路由器延迟的变化对集群性能的影响有限。相比网络延迟,应用层延迟对任务的影响比例更大。但是网络的延迟会对应用系统造成潜在的影响,例如造成不必要的应用切换等。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28