
互联网金融:大数据推动金融体系的大变革
我们认为,大数据在互联网金融领域的核心作用在于提高金融机构的风险定价能力, 提供全面、动态的定价体系, 推动金融体系发生变革,业务层面主要体现在社会征信体系构建和金融产品设计两个层次。
大数据构建征信体系
征信是互联网金融发展的基石。 我国征信体系发展比较滞后,一直都缺乏充分的数据来源和有效的技术手段。 直到 2004 年,央行才开始建成全国统一的个人信用信息基础数据库, 2005 年,原有的银行信贷登记咨询系统升级为企业信用信息基础数据库。 目前,央行征信数据库有大约 8 亿个人和将近 2000 万家企业的征信数据。但是,央行的征信数据是来自于商业银行、社会机构等的上报数据,存在信息量少、准确率低等缺点,尤其是个人用户和小微企业,无法真正有效识别其征信情况。因此,商业银行在实际业务开展过程中,一般采用一刀切的模式,很少为小微企业、个人用户提供信贷等金融服务。
互联网海量数据和大数据技术助力建立全社会征信图谱:
全社会征信体系构建将为普惠金融打下基础。 大数据技术助力社会征信体系构建后,将显著提高金融业务的广度和深度,帮助金融机构低成本、高效地服务低收入人群和小微企业, 主要体现为消费金融业务和小微企业贷款业务。
消费金融: 商业银行可以与个人征信公司合作,识别个人用户的信用风险,扩大个人消费信贷业务。美国消费金融市场规模将近 3 万亿美元,我国消费金融尚处于起步阶段,未来还有很大的挖掘空间。
小微企业贷款: 商业银行可以与第三方公司合作,由拥有数据优势的第三方公司通过建模识别小微企业的违约风险,为商业银行小微企业信贷提供信用验证。以汉得信息的供应链金融业务为例,通过云的形式为小微企业提供低成本的信息化服务,获得小微企业的流水数据,包括采购、销售、存货、总账、报表等各项数据,掌握企业的经营信息和征信情况,为企业贷款提供数据验证,解决银行与小微企业信息不对称这一核心问题,基于此与银行合作有针对性的开拓小微企业金融业务。
金融产品设计更加合理,提高产品价值
大数据可以帮助金融机构设计差异化的金融产品和实现精准营销。 金融机构可以充分利用大数据技术对于用户 进行全方位的评估, 并以此为依据为用户提供个性化的金融产品,使金融产品的设计更为科学,提升产品价值,实现超额收益。
例如, 大数据技术可以使保险产品的设计更加精准:
第一,可以实现差异化定价。 传统的线下保险产品设计是基于固化的经验数据,再建立一套模型来做精算;而互联网保险的数据是实时、动态的关联数据,用户的消费数据、行为习惯、忠诚度以及信用水平都可以成为可供挖掘的大数据,因此在保险产品设计和定价上都可以更为灵活,提高保险理赔准确性和及时性,传统的精算模型正在被颠覆。
以淘宝退货运费险为例,保险公司可以根据每个买家的购买运费之后的历史理赔成功次数与投保成功次数的比值来决定其保费水平,实现差异化定价,解决高退货率买家倾向于购买退货险的问题。
第二,产品设计以用户体验为中心,做到个性化定制。 产品的用户体验将取代原有的保险机构精算成为第一要素,有针对性的解决不同场景下的特定风险,在保险标的、责任范围、保费费率等层面都可以实现量身定制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08