京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1:消费者的C2B的需求来源于哪里?
C2B,我们可以用很通俗的话来解释,叫做个性化需求个性化满足,
相对于传统产品市场而言,标准化的产品必然无法满足到所有人群,因此一部分基于客观需求,或者个人需求独特的消费群体油然而生,从经济承受角度而言,会产生两种个性化需求人群,一种是能够为此付高昂服务费的,另外一部分是能够付费比标准品稍微多一些的消费群体。
但这里要注意一点,个性化定制实际有广义和狭义之分,如果你要像购买艺术作品一样,你所得到的完全是按照你的构想所定制出来的,那你得花费相对应的代价,当然市场上也有提供这种服务的公司,一个做高端皮具的朋友告诉我,他们公司的个性化皮具,一套在数万元,那换做一套家居呢?
所以,定位为中高端市场,或者说大众市场的品牌,他们的定制不可能是完全个性化,完全按照你所想要的来。这种定制一定是基于某种模板之下,然后进行个人需要爱好的组合,或在某些特殊元素上进行个性化的提供,比如房型上,比如特别的尺寸上,比如家居的搭配上。
所以,中高端市场的C2B,是基于某种程度上的个性化,而并非完全个性化,并且这种“半程度”的个性化完全可以做到大规模生产,所以C2B才能称作为一种商业模式。
2:C2B更有利于商家销售
既然打出了C2B这个口号,必然存在个性化的服务而言,一般这种服务包括,从最前端的接待咨询,介绍品牌,需求沟通,现场量尺,个性化方案制作,再到交款下单,这一系列的过程下来,需要耗费消费者和商家之间的大量时间,请注意,这种付出非常值得,这也就是互联网里经常提到的“免费策略”
客户不需要付出的是金钱,需要付出的是时间,双方交流的时间越长,互动的时间也越长,消费者对品牌的理解也会越多,最后转化成购买也越多。
因此对商家而言,C2B实际是更加有利于促进商家的销售,反观传统成品市场,消费者一看二摸三问家,直接进入主题,买和不买就算在现场的那么几十分钟,商家很难通过简短的时间促使客户下单,除非该客户在进店之前对该品牌有过深刻的了解。
而且这种个性化的定制,有助于商家避免所谓的电商价格战,价格完全可以由双方进行掌控,消费者预算不足,即可进行简单的个性化定制,就像装修一样,消费者也可以按照自己的喜好省去不必要的组成部分,实实在在的为自己省钱。
3:C2B才是O2O真正的引爆点
大家老在谈O2O,都离不开团购网站那套。团购网站为什么好玩O2O?首先是因为大家对团购这种模式的接受,只要网站本身具有一定的说服力,比如美团,拉手这些,消费者寻求到合适自己的订单即会支付;
再者,团购网站的客单价本来就不高,产品也较标准化,而且有评论作为支撑,因此消费者的付单率会很高。
但反观家居一类的大众产品,这类真正需要O2O才能撬动的行业,线上提前支付几乎很难。
一个是消费者再没有确认下单之前,没有理由在线上进行支付,给自己添麻烦,虽然很多行业里有售卖“抵付卡”这种模式,但也就20元到100元而言,对于动不动就上万的家居行业而言,根本算不上什么,所以依靠线上支付,把消费者绑到线下几乎很难,过往的各种促销,打折等等,消费者早已疲倦,所以从线上到线下的转化率很低。
但服务不同,尤其是这种C2B的服务,由于客户前期付出了一定的时间成本,再加上销售人员前期有和客户进行互动,能够把握住消费者的需求点,所以很容易通过“服务+把握诉求”引导客户进店进行体验。
所以,C2B才是O2O最好的引爆点。
4:C2B+O2O真的需要大数据吗?
首先,什么是大数据?大数据其实是一个很实际的概念,就是你有过很多的客户数据积累,比如客户的C2B案例,不同类型客户的销售成功经验,不同网络渠道来源的客户转化经验,C2B+O2O的运营试错经验,等等,这些都可以称之为大数据。
那这些所谓的大数据是如何运用的呢?
1,工厂的运作需要大数据,由于每个订单的规格都是不同的,所以产品的各个部件是需要分开到不同的流水线生产的,当同批次的订单量达不到一定的规模,这种生产成本就会很高,所以订单的数量需要大数据。
2,设计师的经验需要大数据,如若没有一定量的客户积累经验,在面对“免费服务”和客户的博弈之下,客服人员在分配客户时,如何把有限的设计师资源调配给最有潜力的客户等,这些都需要“经验的大数据”,也是决定整个运营质量的关键之根本。
3,和客户产生互动需要大数据,客户在线上和商家进行互动时,一般都会寻找到自己最熟悉的模板,全国这么多的楼盘,这么多的客户,如果没有一定的设计案例大数据积累,如何去满足互联网上各种客户?没有这些案例,如何能引发客户和商家之间的互动?
4,线下服务需要大数据,互联网是开放式的,当线上的互动客户数量急剧累计的时候,线下的服务要跟的上,才能给客户提供服务。然而门店和服务人员的分布又不可能像食杂店一样,到处布点,所以需要根据历史客户的楼盘分布,进行线下门店布局,和服务人员的数量布局,所以线下的运营需要线上的大数据进行驱动。
当然,从实际操作层面而言,要想真正玩好O2O+C2B,真不是一般的企业有实力所能撬动,文中所提到的公司,之所以能在这个领域稍微做出一些成色,和整个集团从最初的布局有很大的关系,从开始的软件,到门店,到工厂,再到电商,都是围绕C2B+O2O,这样一个壁垒而进行建立,才有了今天的成绩。
要想真正玩好O2O+C2B,真不是一般的企业有实力所能撬动,文中所提到的公司,之所以能在这个领域稍微做出一些成色,和整个集团从最初的布局有很大的关系。
本文来源亿欧网 作者谌基平
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27