
O2O时代下的大数据生意:颠覆了谁?
近两年,伴随着移动互联网兴盛,几乎所有互联网人都意识到一个变革的时代即将来临。人类在面对变革的来临,既兴奋又恐惧,这份恐惧源自其对未来的陌生,对自身控制力的怀疑。于是当下市场催生出了各种新概念来描绘未来场景。但浩子认为这些新概念大多也只是基于原有PC场景的总结升级,不具有颠覆性的意义。因为既然是变革,虽然未来如何不可预测,然其逻辑应该是重构和全新的。这些概念会是什么浩子不知道,而如果说未来的概念预测有一个支点,那就是基于技术基础的逻辑推理,原有的各种成型场景都应该被清零。
首先来谈谈基础性的概念:O2O和大数据。O2O是将线上数据与线下行为打通实现交流的概念。大数据则是建立在大量互联网基础上的数据收集,挖掘,从而为各项决策,服务,功能提供支持。也就是在移动互联时代,通过O2O这个手段实现真正的数据交互,从而形成以大数据为基础的各项产品和服务。之所以是“大”数据,是因为不再用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法 ;数据类型将更多的以用户为基础形成的各项数据模块。
正如KK所言(浩子不是KK的信徒,只是偶然瞄到他的一句话而已),移动互联时代将进入一个“数据生意”的时代。所有的互联网盈利模式也都将围绕着大数据展开,这将有别与PC时代的流量为核心。如果说安卓或微信是做生态层面的产品,那大数据就是这些生态里的基础产品。犹如现实生态里的农作物,矿产。大数据矿藏不是通过几千年的物理进化形成,而是通过对线下各种行为的数据化收集生成。而移动互联时代更多创业者们要做的产品就是播种机、收割机、挖掘机、厨房,来料加工等等各产业链上的业务。
基于以上数据生意的基础,我们来简单谈谈几个将会被颠覆的互联网基础概念。
平台:移动互联时代将摆脱以引流为目的的平台概念,取而代之的是基于数据集成的平台,也就是以数据为核心形成的产业链模式。比如大庆发现了油田,在大庆周边即会形成以石油为核心的产业平台。有石油机械产业,石油加工产业,还有以满足石油工人生活的超市,餐厅。
产品的客户体验:O2O是进入移动互联时代的必经之路,所以移动互联时代的客户体验不仅仅是一个APP或公众号的手机操作界面,流程等概念,线下操作是否友善,是否够2(即与线上系统的对接)将成为客户体验的重点。
流量为王:这个在PC时代创造出来的核心概念将被完全颠覆,取而代之的将会是大数据。一个平台的数据收集能力,处理能力成为胜败的关键。一个平台的数据将会具有磁场效应,数据越大其吸引力就越强。当然引流功能也将长期存在,只是其所处的核心地位将会被大数据取代。
估值:PC时代基于点击率,流量的产品估值方式将会随着流量的核心地位被颠覆而改变。产品的数据收集沉淀能力,数据挖掘能力会成为产品估值的主要依据。
盈利模式:大数据的交易形式将会趋于多样化,不是简单的出卖泄露隐私数据,而是基于平台的数据资源的各种应用挖掘开发。平台将各种类型数据进行分类管理,制作各种管道输出接口,根据下游开发商需求给予各种类型接口。如果平台的数据资源是一个矿藏,就会有各种类型的挖掘机和加工企业为取得自己所需数据付费,而加工企业也会将其数据产品卖给要求更加精细的企业。从而形成庞大的产业链。基于以上设想,层级越高的企业所获得的利润也越高。
既然是颠覆,将会是系统性的,这里只是选用几个比较基础的概念进行阐述。当然以上理解只是浩子基于对现有技术及个人实践,通过逻辑推理得出的预测设想,移动互联技术日新月异,千变万化,特别是线下人的接受改造程度存在太多变数,也可能以上阐述只是扯淡,仅供读者参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29