
以大数据促进国家治理现代化
大数据是一场管理革命,“用数据说话、用数据决策、用数据管理、用数据创新”,会给国家治理方式带来根本性变革。
“四个结合”助力国家大数据战略
实施国家大数据战略部署和顶层设计,需要我们做到“四个结合”:把政府数据开放和市场基于数据的创新结合起来。政府拥有80%的数据资源,如果不开放,大数据战略就会成为无源之水,市场主体如果不积极利用数据资源进行商业创新,数据开放的价值就无从释放;把大数据与国家治理创新结合起来。国务院的部署明确提出,“将大数据作为提升政府治理能力的重要手段”“提高社会治理的精准性和有效性”,用大数据“助力简政放权,支持从事前审批向事中事后监管转变”“借助大数据实现政府负面清单、权力清单和责任清单的透明化管理,完善大数据监督和技术反腐体系”,并具体部署了四大重大工程:政府数据资源共享开放工程、国家大数据资源统筹发展工程、政府治理大数据工程、公共服务大数据工程;把大数据与现代产业体系结合起来。这里涉及农业大数据、工业大数据、新兴产业大数据等,我国的产业结构优化升级迎来难得的历史机遇;把大数据与大众创业、万众创新结合起来。国务院专门安排了“万众创新大数据工程”,数据将成为大众创业、万众创新的肥沃土壤,数据密集型产业将成为发展最快的产业,拥有数据优势的公司将迅速崛起。
此外,我国作为世界制造业第一大国,需要高度关注一个现实——大数据重新定义了制造业创新升级的目标和路径。无论是德国提出的工业4.0战略,还是美国通用公司提出的工业互联网理念,本质正是先进制造业和大数据技术的统一体。大数据革命骤然改变了制造业演进的轨道,加速了传统制造体系的产品、设备、流程贬值淘汰的进程。数字工厂或称智能工厂,是未来制造业转型升级的必然方向。我国面临着从“制造大国”走向“制造强国”的历史重任,在新的技术条件下如何适应变化、如何生存发展、如何参与竞争,是非常现实的挑战。
推动大数据在国家治理上的应用
在大数据条件下,数据驱动的“精准治理体系”“智慧决策体系”“阳光权力平台”将逐渐成为现实。大数据已成为全球治理的新工具,联合国“全球脉动计划”就是用大数据对全球范围内的推特(Twitter)和脸谱(Facebook)数据和文本信息进行实时分析监测和“情绪分析”,可以对疾病、动乱、种族冲突提供早期预警。在国家治理现代化进程中推动大数据应用,是我们繁重而紧迫的任务。
在政府治理方面,政府可以借助大数据实现智慧治理、数据决策、风险预警、智慧城市、智慧公安、舆情监测等。大数据将通过全息的数据呈现,使政府从“主观主义”“经验主义”的模糊治理方式,迈向“实事求是”“数据驱动”的精准治理方式。
经济治理领域也是大数据创新应用的沃土,大数据是提高经济治理质量的有效手段。互联网系统记录着每一位生产者、消费者所产生的数据,可以为每个市场主体进行“精确画像”,从而为经济治理模式带来突破。判断经济形势好坏不再仅仅依赖统计样本得来的数据,而是可以通过把海量微观主体的行为加总,推导出宏观大趋势;银行发放贷款不再受制于信息不对称,通过贷款对象的大数据特征可以很好地预测其违约的可能性;打击假冒伪劣、建设“信用中国”也不再需要消耗大量人力、物力,大数据将使危害市场秩序的行为无处遁形。
在公共服务领域,基于大数据的智能服务系统,将会极大地提升人们的生活体验,智慧医疗、智慧教育、智慧出行、智慧物流、智慧社区、智慧家居等等,人们享受的一切公共服务将在数字空间中以新的模式重新构建。
加强大数据动态的跟踪研究
我国要从“数据大国”成为“数据强国”,借助大数据革命促进国家治理现代化,还有几个关键问题需要深入研究。
切实建设数据政策体系、数据立法体系、数据标准体系。以数据立法体系为例,一定要在数据开放和隐私保护之间权衡利弊,找到平衡点。
重视对“数据主权”问题的研究。借助大数据技术,美国政府和互联网、大数据领军公司紧密结合,形成“数据情报联合体”,对全球数据空间进行掌控,形成新的“数据霸权”。思科、IBM、谷歌、英特尔、苹果、甲骨文、微软、高通等公司产品几乎渗透到世界各国的政府、海关、邮政、金融、铁路、民航系统。在这种情况下,我国数据主权极易遭到侵蚀。对于我国来说,在服务器、软件、芯片、操作系统、移动终端、搜索引擎等关键领域实现本土产品替代进口产品,具有极高的战略意义,也是维护数据主权的必要条件。
“数据驱动发展”或将成为对冲当前经济下行压力的新动力。大数据是促进生产力变革的基础性力量,这包括数据成为生产要素,数据重构生产过程,数据驱动发展等。数据作为生产要素其边际成本为零,不仅不会越消耗越少,反而保持“摩尔定律”所说的指数型增长速度。这就可能给我国经济转型升级带来新动力,对冲经济下行压力。
需要建设一个高质量的“大数据与国家治理实践案例库”。国家行政学院一直重视案例库的建设,在中央的重视和支持下,就大数据促进国家治理这一主题,各部门、各地方涌现出大量创新性的实践案例,亟须进行系统梳理和总结,形成一个权威的“大数据与国家治理实践案例库”,以方便全国领导干部进行借鉴和推广。
在大数据时代,个人如何生存、企业如何竞争、政府如何提供服务、国家如何创新治理体系,都需要重新进行审视和考量。我们不能墨守成规,抱残守缺,而是要善于学习,勇于创新,按照党中央、国务院的战略部署,政府和市场两个轮子一起转,把我国建设成“数据强国”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02