京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从事数据挖掘这行的话我还需具备哪些条件(硬件、软件)?
在人工智能领域,数据挖掘(Data Mining)是资料库知识发现KDD(Knowledge Discovery in Databases )中的一个步骤,通过它可以从大量数据中获取有价值又新颖的信息。最著名的例子是,在沃尔玛一家超市里,尿布和啤酒赫然摆在一起出售。奇怪的货品摆放让尿布和啤酒的销量双双增加了。原来是沃尔玛通过数据挖掘发现,跟尿布一起购买最多的商品竟是啤酒!在美国,一些年轻父亲下班后经常要到超市买婴儿尿布,而他们中有30%~40%的人同时也会为自己买一些啤酒。瞧,数据挖掘真的可以发现一些潜伏在水面之下的秘密。一份报告指出,数据挖掘会成为未来10年内重要的技术之一。
从目前来看,从事数据挖掘工作,需要有较强的数学功底和扎实的统计学功底。在计算机技能方面,需要精通IBM IM/SPSS Clementine/SAS EM等工具,熟悉Unix操作系统,熟悉DB2/Oracle等大型关系数据库,具备Shell/Perl/TCL/C/C++等编程能力,能够自编挖掘算法、进行商业统计分析、预测。熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的统计图形技术。
对于这个职业,目前市场提供的培训有Oracle数据仓库与数据挖掘培训、SAS全球专业认证和SPSS中国的培训,国内则有国家数据分析师(NTC-CCDA)认证培训。
除了专业知识还需要有一定的行业知识。当前数据挖掘应用主要集中在电信、零售、农业、银行、电力、生物、天体、化工、医药等方面,若你想从事某个行业的数据挖掘,还需要尽快深入了解这个行业。
此外,你还需要有良好的团队合作精神,能够主动和项目中其他成员紧密合作,因为数据挖掘涉及方方面面的关系,非常讲求公司内部的合作。
当然,良好的客户沟通能力也很重要。要掌握一些CRM(客户关系管理)知识和理念,明确阐述数据挖掘项目的重点和难点,调整客户对数据挖掘的误解和过高期望,让模型维护人员了解并掌握数据挖掘方法论及建模实施能力。你还要善于将挖掘结果和客户的业务管理相结合,向客户提供有价值的可行性操作方案。
这一行的职位除了技术要求很高的数据挖掘和算法工程师外,还有数据采集分析专员、市场数据分析师。数据采集分析专员的主要职责是把公司运营的数据收集起来,从中挖掘出规律性的信息来指导公司的战略方向。数据采集分析专员很容易获得行业经验,在分析过程中能够轻易把握行业的市场情况、客户习惯、渠道分布等关键情况,如果想在某行创业,从数据采集分析专员干起是一个不错的选择。而市场数据分析师是现代市场营销科学必不可少的关键环节,市场数据分析师可以根据产品结合目标市场顾客的家庭收入、教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告成为客户。可以说,他们能为直接面向客户的市场营销提供极大的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22