
从事数据挖掘这行的话我还需具备哪些条件(硬件、软件)?
在人工智能领域,数据挖掘(Data Mining)是资料库知识发现KDD(Knowledge Discovery in Databases )中的一个步骤,通过它可以从大量数据中获取有价值又新颖的信息。最著名的例子是,在沃尔玛一家超市里,尿布和啤酒赫然摆在一起出售。奇怪的货品摆放让尿布和啤酒的销量双双增加了。原来是沃尔玛通过数据挖掘发现,跟尿布一起购买最多的商品竟是啤酒!在美国,一些年轻父亲下班后经常要到超市买婴儿尿布,而他们中有30%~40%的人同时也会为自己买一些啤酒。瞧,数据挖掘真的可以发现一些潜伏在水面之下的秘密。一份报告指出,数据挖掘会成为未来10年内重要的技术之一。
从目前来看,从事数据挖掘工作,需要有较强的数学功底和扎实的统计学功底。在计算机技能方面,需要精通IBM IM/SPSS Clementine/SAS EM等工具,熟悉Unix操作系统,熟悉DB2/Oracle等大型关系数据库,具备Shell/Perl/TCL/C/C++等编程能力,能够自编挖掘算法、进行商业统计分析、预测。熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的统计图形技术。
对于这个职业,目前市场提供的培训有Oracle数据仓库与数据挖掘培训、SAS全球专业认证和SPSS中国的培训,国内则有国家数据分析师(NTC-CCDA)认证培训。
除了专业知识还需要有一定的行业知识。当前数据挖掘应用主要集中在电信、零售、农业、银行、电力、生物、天体、化工、医药等方面,若你想从事某个行业的数据挖掘,还需要尽快深入了解这个行业。
此外,你还需要有良好的团队合作精神,能够主动和项目中其他成员紧密合作,因为数据挖掘涉及方方面面的关系,非常讲求公司内部的合作。
当然,良好的客户沟通能力也很重要。要掌握一些CRM(客户关系管理)知识和理念,明确阐述数据挖掘项目的重点和难点,调整客户对数据挖掘的误解和过高期望,让模型维护人员了解并掌握数据挖掘方法论及建模实施能力。你还要善于将挖掘结果和客户的业务管理相结合,向客户提供有价值的可行性操作方案。
这一行的职位除了技术要求很高的数据挖掘和算法工程师外,还有数据采集分析专员、市场数据分析师。数据采集分析专员的主要职责是把公司运营的数据收集起来,从中挖掘出规律性的信息来指导公司的战略方向。数据采集分析专员很容易获得行业经验,在分析过程中能够轻易把握行业的市场情况、客户习惯、渠道分布等关键情况,如果想在某行创业,从数据采集分析专员干起是一个不错的选择。而市场数据分析师是现代市场营销科学必不可少的关键环节,市场数据分析师可以根据产品结合目标市场顾客的家庭收入、教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告成为客户。可以说,他们能为直接面向客户的市场营销提供极大的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01