京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电信与媒体市场调研公司Informa Telecoms & Media在2013年的调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务。该调研公司表示,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右,成为运营商的一项战略性优势。可见,由流量经营进入大数据运营已成为大势所趋。
电信运营商拥有多年的数据积累,拥有诸如财务收入、业务发展量等结构化数据,也会涉及到图片、文本、音频、视频等非结构化数据。从数据来源看,电信运营商的数据来自于涉及移动语音、固定电话、固网接入和无线上网等所有业务,也会涉及公众客户、政企客户和家庭客户,同时也会收集到实体渠道、电子渠道、直销渠道等所有类型渠道的接触信息。整体来看,电信运营商大数据发展仍处在探索阶段。
大数据在电信行业应用的总体情况
目前国内运营商运用大数据主要有五方面:(1)网络管理和优化,包括基础设施建设优化和网络运营管理和优化;(2)市场与精准营销,包括客户画像、关系链研究、精准营销、实时营销和个性化推荐;(3)客户关系管理,包括客服中心优化和客户生命周期管理;(4)企业运营管理,包括业务运营监控和经营分析;(5)数据商业化指数据对外商业化,单独盈利。
第一方面:网络管理和优化。此方向包括对基础设施建设的优化和网络运营管理及优化。
(1)基础设施建设的优化。如利用大数据实现基站和热点的选址以及资源的分配。运营商可以通过分析话单和信令中用户的流量在时间周期和位置特征方面的分布,对2G、3G的高流量区域设计4G基站和WLAN热点;同时,运营商还可以对建立评估模型对已有基站的效率和成本进行评估,发现基站建设的资源浪费问题,如某些地区为了完成基站建设指标将基站建设在人际罕至的地方等。
(2)网络运营管理及优化。在网络运营层面,运营商可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率。
利用大数据技术实时采集处理网络信令数据,监控网络状况,识别价值小区和业务热点小区,更精准的指导网络优化,实现网络、应用和用户的智能指配。由于用户群的不同,不同小区对运营商的贡献也不同。运营商可以将小区的数据进行多维度数据综合分析,通过对小区VIP用户分布,收入分布,及相关的分布模型得到不同小区的价值,再和网络质量分析结合起来,两者叠加一起,就有可能发现某个小区价值高,但是网络覆盖需要进一步提升,进而先设定网络优化的优先级,提高投资效率。
德国电信建立预测城市里面的各区域无线资源占用模型,根据预测结果,灵活的提前配置无线资源,如在白天给CBD地区多分配无线资源,在晚上,则给酒吧地区多分配无线资源,使得无线网络的运行效率和利用率更高。
法国电信通过分析发现某段网络上的掉话率持续过高,借助大数据手段诊断出通话中断产生的原因是网络负荷过重造成,并根据分析结果优化网络布局,为客户提供了更好的体验,获得了更多的客户以及业务增长;
第二方面,市场与精准营销。此方向包括客户画像、关系链研究、精准营销、实时营销和个性化推荐。
(1)客户画像。运营商可以基于客户终端信息、位置信息、通话行为、手机上网行为轨迹等丰富的数据,为每个客户打上人口统计学特征、消费行为、上网行为和兴趣爱好标签,并借助数据挖掘技术(如分类、聚类、RFM等)进行客户分群,完善客户的360度画像,帮助运营商深入了解客户行为偏好和需求特征。
(2)关系链研究。运营商可以通过分析客户通讯录、通话行为、网络社交行以及客户资料等数据,开展交往圈分析。尤其是利用各种联系记录形成社交网络来丰富对用户的洞察,并进一步利用图挖掘的方法来发现各种圈子,发现圈子中的关键人员,以及识别家庭和政企客户;或者分析社交圈子寻找营销机会。如在一个行为同质化圈子里面,如果这个圈子大多数为高流量用户,并在这个圈子中发现异网的用户,我们可以推测该用户也是高流量的情况,便可以通过营销的活动把异网高流量的用户引导到自己的网络上,对其推广4G套餐,提升营销转化率。总之,我们可以利用社交圈子提高营销效率,改进服务,低成本扩大产品的影响力。
(3)精准营销和实时营销。运营商在客户画像的基础上对客户特征的深入理解,建立客户与业务、资费套餐、终端类型、在用网络的精准匹配,并在在推送渠道、推送时机、推送方式上满足客户的需求,实现精准营销。如我们可以利用大数据分析用户的终端偏好和消费能力,预测用户的换机时间尤其是合约机到期时间,并捕捉用户最近的特征事件,从而预测用户购买终端的真正需求,通过短信、呼叫中心、营业厅等多种渠道推送相关的营销信息到用户手中。
(4)个性化推荐。利用客户画像信息、客户终端信息、客户行为习惯偏好等,运营商可以为客户提供定制化的服务,优化产品、流量套餐和定价机制,实现个性化营销和服务,提升客户体验与感知;或者在应用商城实现个性化推荐,在电商平台实现个性化推荐,在社交网络推荐感兴趣的好友。
第三方面,客户关系管理。此方面包括客服中心优化和客户生命周期管理。
(1)客服中心优化。客服中心是运营商和客户接触较为频繁的通道,因此客服中心拥有大量的客户呼叫行为和需求数据。我们可以利用大数据技术可以深入分析客服热线呼入客户的行为特征、选择路径、等候时长,并关联客户历史接触信息、客户套餐消费情况、客户人口统计学特征、客户机型等数据,建立客服热线智能路径模型,预测下次客户呼入的需求、投诉风险以及相应的路径和节点,这样便可缩短客服呼入处理时间,识别投诉风险,有助于提升客服满意度;另外,也可以通过语义分析,对客服热线的问题进行分类,识别热点问题和客户情绪,对于发生量较大且严重的问题,要及时预警相关部门进行优化。(文章来自:CDA数据分析师培训官网)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20