京公网安备 11010802034615号
经营许可证编号:京B2-20210330
探索互联网+信用监管 大数据开启市场监管新模式
提及“大数据”监管的前景,浦东市场监管局相关负责人透露:“网络订餐行业只是我们探索‘互联网+信用监管’的第一步,今后,我们还将向各个行业、各个领域推行‘大数据’监管模式。我们的信息资源将逐步向全社会敞开大门,欢迎社会各方加入共治行列,与我们一起共筑市场安全防线。”
8月底,浦东市场监管局与网络订餐平台“饿了么”启动“互联网+信用监管”项目,率先探索政府数据走出“深闺”,与第三方平台实现数据多方共享。记者获悉,试点近一个月下来,仅在先行试点的陆家嘴地区,浦东市场监管局已向“饿了么”推送商户信息371家,数据量达到12万。“饿了么”也已将政府监管信息以20%的比重纳入其信用评价体系。浦东新区走出了通过“大数据”,参与食品安全监管过程的第一步。浦东市场监管局透露,本月底提前将该项目从陆家嘴地区覆盖至浦东全区。
“脸谱”反映食品安全状况
细心的用户张先生最近在使用“饿了么”订餐时发现,平台上的一些商户信息中都不约而同地挂上了“脸谱”符号,点开“脸谱”,商户的营业执照、餐饮服务许可证和食品安全监督公示信息跃然屏上。这些数据正是由浦东市场监管局与“饿了么”对接,并向全社会开放共享的。“脸谱”分为笑脸、平脸和哭脸三种,形象地反映了商户的食品安全状况,便于消费者选择优质、安全的餐饮服务。
说起数据开放共享的缘起,第三方网络订餐平台“饿了么”CEO 张旭豪颇为感慨:“我们曾接到过消费者反映,称有的商家上传的证照信息和实际经营状态是不一致的。”张旭豪表示,“饿了么”一直设法加强对入网商户的规范化管理,要求经营者必须上传证照扫描件。但是很多信息还是无法准确掌握,在资质审查时确实有困难。
浦东新区市场监管局副局长管捍东也表示,之所以选择“饿了么”试点“互联网+信用监管”项目,除了考虑到“饿了么”规模、影响都比较大,也是因为“仅凭第三方平台线上核查,或是单纯依靠政府部门线下监管,力量都是有限的”。
项目试水一个月效果如何?消费者孙女士直言,以往订餐时餐厅的信息并不透明,自己只能参考订单数量和用户点评来判断餐厅的还坏,“现在就直观多了,我肯定会优先选择资质齐全、带‘笑脸’的餐厅。”孙女士不知道的是,她做出的个体选择还将汇集成市场选择,成为食品安全监管的间接推动者。如果发现公示信息与实际情况不符,消费者也可以及时向平台和监管部门反映,促进行业规范和市场监管到位。
“黑暗料理”将被清退
据介绍,上海浦东新区先行在餐饮店数量多、监管难度大的浦东陆家嘴地区试点“互联网+信用监管”项目。消费者通过第三方平台进行网络订餐时,就能对接政府“大数据”,参与食品安全监管过程。陆家嘴地区汇集了近900家餐饮单位,接近浦东全区的十分之一:“饿了么”在陆家嘴地区“饿单”日均接单量占全区30%,目前,浦东市场监管局已向“饿了么”推送了陆家嘴地区商户371家,内容包括工商信息、许可证信息和监管信息,数据量达到12万。
与此同时,“饿了么”已将政府监管信息以20%的比重纳入其新制定的信用评价体系,以此对商户进行综合信用质量评分和排序,并将配套采取关闭网店、停止网上经营、通报政府部门等手段,加强对入驻商户的线上管理和联合惩戒,以提高第三方平台餐饮服务的整体诚信度。
“饿了么”方面表示,今后将杜绝无证照餐饮入网经营,新入网商户需先上传相关证照,经平台方线下现场核查、实名登记后,再与浦东市场监管局数据库线上比对。只有数据完全匹配,才能在线上开店经营。
“饿了么”会员王女士最近就遇到了这样一件事。她经常光顾的一家平台商户突然不见了踪影。后来她才知道,原来这是一家卫生状况很差、无证照的“黑暗料理”,现已被市场监管部门和第三方平台联手清退了。
据初步统计,“互联网+信用监管”项目试点一个月以来,陆家嘴地区“笑脸”商户订单量平均上涨约15%,而资质不全的无脸谱商户订单量有一定比例的下降。
“互联网+信用监管”只是第一步
浦东新区市场监管局相关负责人透露,一个月间,监管局共接到涉及“饿了么”的食品安全类投诉35起,均通过平台同步流向“饿了么”,进行解决。监管部门在线下处置实体商户的同时,“饿了么”也同步完成处置和回访,并对所涉商户作出线上信用评价记录、督促整改。
提及“大数据”监管的前景,浦东市场监管局相关负责人透露:“网络订餐行业只是我们探索‘互联网+信用监管’的第一步,今后,我们还将向各个行业、各个领域推行‘大数据’监管模式。我们的信息资源将逐步向全社会敞开大门,欢迎社会各方加入共治行列,与我们一起共筑市场安全防线。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22