京公网安备 11010802034615号
经营许可证编号:京B2-20210330
探索互联网+信用监管 大数据开启市场监管新模式
提及“大数据”监管的前景,浦东市场监管局相关负责人透露:“网络订餐行业只是我们探索‘互联网+信用监管’的第一步,今后,我们还将向各个行业、各个领域推行‘大数据’监管模式。我们的信息资源将逐步向全社会敞开大门,欢迎社会各方加入共治行列,与我们一起共筑市场安全防线。”
8月底,浦东市场监管局与网络订餐平台“饿了么”启动“互联网+信用监管”项目,率先探索政府数据走出“深闺”,与第三方平台实现数据多方共享。记者获悉,试点近一个月下来,仅在先行试点的陆家嘴地区,浦东市场监管局已向“饿了么”推送商户信息371家,数据量达到12万。“饿了么”也已将政府监管信息以20%的比重纳入其信用评价体系。浦东新区走出了通过“大数据”,参与食品安全监管过程的第一步。浦东市场监管局透露,本月底提前将该项目从陆家嘴地区覆盖至浦东全区。
“脸谱”反映食品安全状况
细心的用户张先生最近在使用“饿了么”订餐时发现,平台上的一些商户信息中都不约而同地挂上了“脸谱”符号,点开“脸谱”,商户的营业执照、餐饮服务许可证和食品安全监督公示信息跃然屏上。这些数据正是由浦东市场监管局与“饿了么”对接,并向全社会开放共享的。“脸谱”分为笑脸、平脸和哭脸三种,形象地反映了商户的食品安全状况,便于消费者选择优质、安全的餐饮服务。
说起数据开放共享的缘起,第三方网络订餐平台“饿了么”CEO 张旭豪颇为感慨:“我们曾接到过消费者反映,称有的商家上传的证照信息和实际经营状态是不一致的。”张旭豪表示,“饿了么”一直设法加强对入网商户的规范化管理,要求经营者必须上传证照扫描件。但是很多信息还是无法准确掌握,在资质审查时确实有困难。
浦东新区市场监管局副局长管捍东也表示,之所以选择“饿了么”试点“互联网+信用监管”项目,除了考虑到“饿了么”规模、影响都比较大,也是因为“仅凭第三方平台线上核查,或是单纯依靠政府部门线下监管,力量都是有限的”。
项目试水一个月效果如何?消费者孙女士直言,以往订餐时餐厅的信息并不透明,自己只能参考订单数量和用户点评来判断餐厅的还坏,“现在就直观多了,我肯定会优先选择资质齐全、带‘笑脸’的餐厅。”孙女士不知道的是,她做出的个体选择还将汇集成市场选择,成为食品安全监管的间接推动者。如果发现公示信息与实际情况不符,消费者也可以及时向平台和监管部门反映,促进行业规范和市场监管到位。
“黑暗料理”将被清退
据介绍,上海浦东新区先行在餐饮店数量多、监管难度大的浦东陆家嘴地区试点“互联网+信用监管”项目。消费者通过第三方平台进行网络订餐时,就能对接政府“大数据”,参与食品安全监管过程。陆家嘴地区汇集了近900家餐饮单位,接近浦东全区的十分之一:“饿了么”在陆家嘴地区“饿单”日均接单量占全区30%,目前,浦东市场监管局已向“饿了么”推送了陆家嘴地区商户371家,内容包括工商信息、许可证信息和监管信息,数据量达到12万。
与此同时,“饿了么”已将政府监管信息以20%的比重纳入其新制定的信用评价体系,以此对商户进行综合信用质量评分和排序,并将配套采取关闭网店、停止网上经营、通报政府部门等手段,加强对入驻商户的线上管理和联合惩戒,以提高第三方平台餐饮服务的整体诚信度。
“饿了么”方面表示,今后将杜绝无证照餐饮入网经营,新入网商户需先上传相关证照,经平台方线下现场核查、实名登记后,再与浦东市场监管局数据库线上比对。只有数据完全匹配,才能在线上开店经营。
“饿了么”会员王女士最近就遇到了这样一件事。她经常光顾的一家平台商户突然不见了踪影。后来她才知道,原来这是一家卫生状况很差、无证照的“黑暗料理”,现已被市场监管部门和第三方平台联手清退了。
据初步统计,“互联网+信用监管”项目试点一个月以来,陆家嘴地区“笑脸”商户订单量平均上涨约15%,而资质不全的无脸谱商户订单量有一定比例的下降。
“互联网+信用监管”只是第一步
浦东新区市场监管局相关负责人透露,一个月间,监管局共接到涉及“饿了么”的食品安全类投诉35起,均通过平台同步流向“饿了么”,进行解决。监管部门在线下处置实体商户的同时,“饿了么”也同步完成处置和回访,并对所涉商户作出线上信用评价记录、督促整改。
提及“大数据”监管的前景,浦东市场监管局相关负责人透露:“网络订餐行业只是我们探索‘互联网+信用监管’的第一步,今后,我们还将向各个行业、各个领域推行‘大数据’监管模式。我们的信息资源将逐步向全社会敞开大门,欢迎社会各方加入共治行列,与我们一起共筑市场安全防线。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22