
智能手表的大数据价值源于整合
在可穿戴设备产业中,当前最受大众关注,以及大众认知度最高的产品“三剑客”,是智能眼镜、智能手表、智能手环。不论是哪种形态的可穿戴设备,其核心价值都是围绕着数据展开。不论是对数据的采集、挖掘,还是可穿戴设备本身价值的挖掘都离不开数据。但是当前可穿戴设备基本都还没进入到数据价值的环节,整个产业基本都还停留在硬件产品本身。
从目前的产业情况来看,经历了这几年的发展之后,可穿戴设备的相关从业者已经较初期有了更多的思考。从应用层面来看,已经从之前的运动监测为主的功能拓展到了医疗监测、金融支付、安全定位、智能控制等方面。基于手表的可穿戴设备是目前可穿戴设备产业中最热门的形态,不论是从产品的功能、产品的数量、创业者数量层面来看,都是NO.1,而促成这种局面的关键因素是苹果公司在这个领域的介入。
从目前整个市场的情况来看,主要由以下三股力量在共同推动智能手表产业:第一类是科技公司,比如苹果、三星、LG、华为、摩托罗拉等,这类公司主要借助于自身在通讯领域的优势来打造智能手表。不过苹果的不同之处是改变了整个智能手表产业的发展路径,一方面重新定义了当下智能手表的价值,将智能手表变得更加时尚;另外一方面则是推动了整个产业链技术的进步。第二类是传统钟表公司,主要是受苹果Apple Watch的影响,传统钟表业不得不发力智能化,这也在一定程度上促进了市场的形成。第三类是创业者的进入,主要以细分市场为切入点,比如儿童、老人、娱乐、支付等。
不论是哪一类企业,从目前的产业情况来看都难以形成有效的大数据价值。大部分的智能手表目前所面临的处境都不容乐观,一方面是使用者有限,主要是产品过于分化、多元;另外一方面是使用时间短,也就是通常所说的产品缺乏粘性。在这两种因素之下,开发者就很难获得有效、足量、有价值、有意义的数据,而目前大部分获得的数据可谓是“脏数据”。一旦没有足够的数据采集样本,就很难为算法的修正提供有效价值,这也就在一定的层面上制约了当前监测数据准确度的提升。
不论是从提升算法技术层面,或是从获取有效数据进行价值挖掘的层面来看,对于智能手表而言当前最重要的是对所采集的数据进行整合,也就是对于当前碎片化数据的智能手表产业而言,要想实现大数据价值的前提在于整合。因此,在我看来要想比较快的实现智能手表的大数据价值意义,有以下三点建议:
1、发挥行业协会的价值。由钟表协会,或者是相关的产业协会牵头,联合相关企业或者是相关部门推出智能手表的专用系统平台,以及相应的云服务接口,并开放给所有的智能手表企业使用。对于当前而言,只有将碎片化的智能手表市场集中起来,才能有效地总结经验、发现问题、修正问题、解决问题。
2、发挥相关企业的力量。由相关企业自愿联合,共同推出一个专属的智能手表系统平台,同样包括相应的云服务接口,并开放给所有的智能手表企业使用,并将所采集到的数据分享给所有接入的企业,或者是由联合成立的公司专门成立相应的研究部门,对所采集到的数据进行挖掘、加工、处理,将所得到的结果,包括算法技术的完善等优先提供给接入的开发者使用。
3、专业的第三方服务公司。以智能手表产业为垂直点,围绕智能手表的系统平台、数据安全、数据采集、数据挖掘等方面,专业为智能手表的开发者提供软系统层面的服务,并由此来构建相应的盈利模式。
不论是以以上的哪种形式,或者是其他形式出现,对于智能手表产业而言要想有效地步入正轨发展,当务之急就是如何解决由产品过于碎片化所带来的数据碎片化问题。不同开发者在进入智能手表产业时,在本身资源有限的情况下做着很多重复的投资工作。每个企业都应该自己搞一套体系,比如APP的开发、算法的建立、云平台的搭建等。以云平台来说,目前大部分的企业都希望自己构建云平台,但现实的情况是大部分企业所构建的云平台安全性很差,而目前没有出现数据泄露的根本原因并不是这些云平台很安全,而是这些数据对于黑客们而言还没有价值。
因此,在我看来当前智能手表产业要想获得大数据的价值,必须转变心态,需要以更加包容、开放的心态来整合数据。只有将当前有限价值的数据进行整合,才能从中挖掘到有效的价值,提升监测算法的精准度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18