京公网安备 11010802034615号
经营许可证编号:京B2-20210330
智能手表的大数据价值源于整合
在可穿戴设备产业中,当前最受大众关注,以及大众认知度最高的产品“三剑客”,是智能眼镜、智能手表、智能手环。不论是哪种形态的可穿戴设备,其核心价值都是围绕着数据展开。不论是对数据的采集、挖掘,还是可穿戴设备本身价值的挖掘都离不开数据。但是当前可穿戴设备基本都还没进入到数据价值的环节,整个产业基本都还停留在硬件产品本身。
从目前的产业情况来看,经历了这几年的发展之后,可穿戴设备的相关从业者已经较初期有了更多的思考。从应用层面来看,已经从之前的运动监测为主的功能拓展到了医疗监测、金融支付、安全定位、智能控制等方面。基于手表的可穿戴设备是目前可穿戴设备产业中最热门的形态,不论是从产品的功能、产品的数量、创业者数量层面来看,都是NO.1,而促成这种局面的关键因素是苹果公司在这个领域的介入。
从目前整个市场的情况来看,主要由以下三股力量在共同推动智能手表产业:第一类是科技公司,比如苹果、三星、LG、华为、摩托罗拉等,这类公司主要借助于自身在通讯领域的优势来打造智能手表。不过苹果的不同之处是改变了整个智能手表产业的发展路径,一方面重新定义了当下智能手表的价值,将智能手表变得更加时尚;另外一方面则是推动了整个产业链技术的进步。第二类是传统钟表公司,主要是受苹果Apple Watch的影响,传统钟表业不得不发力智能化,这也在一定程度上促进了市场的形成。第三类是创业者的进入,主要以细分市场为切入点,比如儿童、老人、娱乐、支付等。
不论是哪一类企业,从目前的产业情况来看都难以形成有效的大数据价值。大部分的智能手表目前所面临的处境都不容乐观,一方面是使用者有限,主要是产品过于分化、多元;另外一方面是使用时间短,也就是通常所说的产品缺乏粘性。在这两种因素之下,开发者就很难获得有效、足量、有价值、有意义的数据,而目前大部分获得的数据可谓是“脏数据”。一旦没有足够的数据采集样本,就很难为算法的修正提供有效价值,这也就在一定的层面上制约了当前监测数据准确度的提升。
不论是从提升算法技术层面,或是从获取有效数据进行价值挖掘的层面来看,对于智能手表而言当前最重要的是对所采集的数据进行整合,也就是对于当前碎片化数据的智能手表产业而言,要想实现大数据价值的前提在于整合。因此,在我看来要想比较快的实现智能手表的大数据价值意义,有以下三点建议:
1、发挥行业协会的价值。由钟表协会,或者是相关的产业协会牵头,联合相关企业或者是相关部门推出智能手表的专用系统平台,以及相应的云服务接口,并开放给所有的智能手表企业使用。对于当前而言,只有将碎片化的智能手表市场集中起来,才能有效地总结经验、发现问题、修正问题、解决问题。
2、发挥相关企业的力量。由相关企业自愿联合,共同推出一个专属的智能手表系统平台,同样包括相应的云服务接口,并开放给所有的智能手表企业使用,并将所采集到的数据分享给所有接入的企业,或者是由联合成立的公司专门成立相应的研究部门,对所采集到的数据进行挖掘、加工、处理,将所得到的结果,包括算法技术的完善等优先提供给接入的开发者使用。
3、专业的第三方服务公司。以智能手表产业为垂直点,围绕智能手表的系统平台、数据安全、数据采集、数据挖掘等方面,专业为智能手表的开发者提供软系统层面的服务,并由此来构建相应的盈利模式。
不论是以以上的哪种形式,或者是其他形式出现,对于智能手表产业而言要想有效地步入正轨发展,当务之急就是如何解决由产品过于碎片化所带来的数据碎片化问题。不同开发者在进入智能手表产业时,在本身资源有限的情况下做着很多重复的投资工作。每个企业都应该自己搞一套体系,比如APP的开发、算法的建立、云平台的搭建等。以云平台来说,目前大部分的企业都希望自己构建云平台,但现实的情况是大部分企业所构建的云平台安全性很差,而目前没有出现数据泄露的根本原因并不是这些云平台很安全,而是这些数据对于黑客们而言还没有价值。
因此,在我看来当前智能手表产业要想获得大数据的价值,必须转变心态,需要以更加包容、开放的心态来整合数据。只有将当前有限价值的数据进行整合,才能从中挖掘到有效的价值,提升监测算法的精准度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22