京公网安备 11010802034615号
经营许可证编号:京B2-20210330
即将被大数据改变的十个行业:医疗 环境 交通
从夜观天象到气象预报,从童话里的水晶球到今日的科技预言家,从地震云的传说再到科学家猛攻的地震预测,人类一直希望能够更早突破局限看穿未来。随着信息革命的深入,大数据时代的预测将更具可操作性和确定性,人类的生活也正在随大数据预测深刻改变。让每一种非常规的变化事前一定有征兆,让每一件事情都有迹可循,这就是大数据预测的愿景。如果找到了征兆与变化之间的确切规律,那么任何行业的预测将来“那都不是事儿”。
1、体育行业预测
世界杯期间,谷歌、百度、微软和高盛等公司都推出了比赛结果预测平台。其中,百度在小组赛阶段的表现最为亮眼,而进入淘汰赛阶段,百度与微软则以16场比赛15场准确预测的成绩让人们见识到大数据在预测领域的魅力。
从互联网公司的经验来看,只要有体育赛事相关的历史数据,并且与指数公司进行多方合作,就可以在赛事预测领域取得不错的成绩。
2、经济、金融行业预测
2013年,英国华威商学院和美国波士顿大学物理系的研究发现,用户通过谷歌搜索的金融关键词或许可以把脉金融市场的走向,相应的投资战略收益高达326%。而此前,也有专家尝试通过Twitter博文情绪来预测股市波动。从预测的原理上来看,稳定发展的美国股市是比较适合大数据预测发挥其作用的。
对国内而言,百度推出的中小企业景气指数预测,应用百度海量的搜索数据来刻画我国中小企业运行发展的景气状态,以期能够及时、有效地反映中小企业运行状况,提高经济监测的全面性和及时性。目前该功能已经上线投入应用。
3、市场物价预测
CPI表征已经发生的物价浮动情况,但统计局数据并不权威。但大数据则可能帮助人们了解未来物价走向,提前预知通货膨胀或经济危机。单个商品的价格预测更加容易,尤其是机票这样的标准化产品,去哪儿提供的“机票日历”就是价格预测,可以告知你几个月后机票的大概价位。商品的生产、渠道成本和大概毛利在充分竞争的市场中是相对稳定的,与价格相关的变量相对固定,商品的供需关系在电子商务平台可实时监控,因此价格可以预测,基于预测结果可提供购买时间建议,或者指导商家进行动态价格调整和营销活动以利益最大化。
4、用户行为预测
基于用户搜索行为、浏览行为、评论历史和个人资料等数据,互联网业务可以洞察消费者的整体需求,进而进行针对性的产品生产、改进和营销。百度基于对海量大数据的智能分析,可以对使用百度产品的用户进行画像,即通过用户输入的搜索词来理解用户的意图,从而就能实现个性化的精准广告推荐提升用户对广告的点击率和对产品的订单转化率。
此外,受益于传感器技术和物联网的发展,线下的用户行为洞察正在酝酿。免费商用WIFI、ibeacon技术、摄像头影像监控、室内定位技术、NFC传感器网络、排队叫号系统,可以探知用户线下的移动、停留、出行规律等数据,进行精准营销或者产品定制。
5、个人健康预测
中医可以通过望闻问切手段发现一些人体内隐藏的慢性病,甚至看体质便可知晓一个人将来可能会出现什么症状。人体体征变化有一定规律,而慢性病发生前人体已经会有一些持续性异常。理论上来说,如果大数据掌握了这样的异常情况,便可以进行慢性病预测。
结合智能硬件,慢性病的大数据预测变为可能。可穿戴设备和智能健康设备帮助网络收集人体健康数据,心率、体重、血脂、血糖、运动量、睡眠量等状况。如果这些数据足够精准且全面,并且有可以形成算法的慢性病预测模式,或许未来你的设备就会提醒你的身体罹患某种慢性病的风险。KickStarter上的My Spiroo便可收集哮喘病人的吐气数据来指导医生诊断其未来的病情趋势。急性病却很难预测,突变和随机性特征使之难以预测。
6、医疗疾病预测
基于人们的搜索情况、购物行为预测大面积疫情爆发的可能性,最经典的“流感预测”便属于此类。如果来自某个区域的“流感”、“板蓝根”搜索需求越来越多,可以在一定程度上推测出该地存在流感的风险。在该领域,包括谷歌、百度、Twitter在内的互联网公司都在尝试利用自己平台的大数据优势做疾病预测的相关分析,甚至已经有相关产品推出。
7、灾害灾难预测
气象预测是最典型的灾难灾害预测。地震、洪涝、高温、暴雨这些自然灾害如果可以利用大数据能力进行更加提前的预测和告知便有助于减灾防灾救灾赈灾。与过往不同的是,过去的数据收集方式存在着死角、成本高等问题,物联网时代可以借助廉价的传感器摄像头和无线通信网络,进行实时的数据监控收集,再利用大数据预测分析,做到更精准的自然灾害预测。
8、环境变迁预测
除了进行短时间微观的天气、灾害预测之外,还可以进行更加长期和宏观的环境和生态变迁预测。森林和农田面积缩小、野生动物植物濒危、海岸线上升,温室效应这些问题是地球面临的“慢性问题“。如果人类知道越多地球生态系统以及天气形态变化数据,就越容易模型化未来环境的变迁,进而阻止不好的转变发生。而大数据帮助人类收集、储存和挖掘更多的地球数据,同时还提供了预测的工具。
9、交通行为预测
基于用户和车辆的LBS定位数据,分析人车出行的个体和群体特征,进行交通行为的预测。交通部门可预测不同时点不同道路的车流量进行智能的车辆调度,或应用潮汐车道;用户则可以根据预测结果选择拥堵几率更低的道路。现成的案例是,百度在春运期间推出的百度迁徙以及用以预测景点游客流量的旅游预测产品,这些产品对于用户出行选择、商家资源分配都具有很高的参考价值。
10、能源消耗预测
加州电网系统运营中心管理着加州超过80%的电网,向3500万用户每年输送2.89亿兆瓦电力,电力线长度超过25000英里。该中心采用了Space-Time Insight的软件进行智能管理,综合分析来自包括天气、传感器、计量设备等各种数据源的海量数据,预测各地的能源需求变化,进行智能电能调度,平衡全网的电力供应和需求,并对潜在危机做出快速响应。中国智能电网业已在尝试类似大数据预测应用。
对于单个家庭来说则可以通过智能家居设备,记录家庭成员的起居习惯,感知用户的舒适度,预测用户的温控能耗需求,进行智能的温控装置控制,还可结合阶梯电价表来帮助用户省钱。Nest正式基于大数据预测用户能耗需求的成功产品。
除了上面列举的10个领域之外,大数据预测还可被应用在房地产预测、就业情况预测、高考分数线预测、选举结果预测、奥斯卡大奖预测、保险投保者风险评估、金融借贷者还款能力评估等等,让人类具备可量化有说服力可验证的洞察未来的能力,大数据预测的魅力正在释放出来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08