
大数据冲击大卖场 挖掘数据的宝藏
现在,如果不经常把“大数据”挂在口头,就如同5年前不知道“云计算”——意味着你已经落伍了。人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展和创新。如果说“云计算”更多的与信息产业的发展未来有关,那么“大数据”对未来的影响面则广泛得多。
作为一名传统产业的从业者,你可以不理会云计算的发展趋势,但每一位企业的领导者,尤其当你置身于商业和服务领域时,如果像对“云计算”那样,把“大数据”当成信息产业的事,那么在未来发展路径的选择上,你很可能错过重大的机会,甚至因此在竞争中落败。
大数据的功力
有关“大数据”,有这样一个通俗易懂、广为流传的故事:在美国,有一位父亲怒气冲冲地跑到沃尔玛卖场,质问为何将带有婴儿用品优惠券的广告邮件,寄送给他正在念高中的女儿?然而后来证实,他的女儿果真怀孕了。这名女孩搜寻商品的关键词,以及在社交网站所显露的行为轨迹,使沃尔玛捕捉到了她的怀孕信息。在大数据时代,商家可以比父亲更了解自己的女儿。
“大数据”对商业的改变,这仅仅是个露出水面的端倪。
在有关大数据的著名书籍《大数据时代——生活、工作与思维的大变革》中,作者讲述了另外一个故事:2009年出现一种新的流感病毒,全球的公共卫生机构都担心它会大规模蔓延,他们迫切想知道流感传播到了哪里,是沿着什么路径传播的。但通常,他们只能等到事情过后,才能根据门诊量得到数据,而此时数据价值显然已大打折扣。但出人意料的是,这次谷歌的工程师们给出了答案,其依据就是人们在网上搜索的与流感相关的关键词,如“感冒药”“喉咙痛”“发烧”和“咳嗽”等。工程师们对比了过去两年美国疾控部门对流感传播的总结报告,发现过往的搜索数据和流感的传染路径相关性达到97%。也就是说,今后疾控中心完全可以通过谷歌的搜索数据第一时间掌握流感的传播方向,而无需等待事后统计。
比起前一个故事,后一个商业故事更能激发人们对“大数据”应用范围、应用方式的遐想。所谓“大数据”并不是一种新技术潮流,而是在信息技术高度发展之后,人们如何开发利用数据为新的商业模式发展奠定基础的过程,是一种基于新工具的新的解决问题思路。
挖掘数据的宝藏
不久前,我应邀考察光大银行。坐落在北京西单十字路口西南方的光大银行北京分行营业厅,是国内银行营业场所信息化、网络化的前沿之地。无论是在ATM机上安装的iPad和手机操作界面,还是在ATM机上实现的与银行顾问实时远程视频通话的功能,都让人耳目一新。而大堂经理的iPad不离手——顾客一旦进门刷卡领取排队号码,其相关信息,包括姓名、性别、资产状况等就会实时显现在这部iPad上。这样,大堂经理就可以用最快的速度向客户提供办理业务的建议。
这是银行利用客户数据对服务进行细化的应用,这种应用已经进入“大数据”的思维方式,沿着这个思路,其实可以进行更多服务项目的开发。
比如:银行可以统计每位客户办理相同业务的时间,甄别那些总是很耗时的客户,交给更有经验的柜员,这将有利于提高营业部的效率;如果统计发现某位客户总是频繁进行简单的转账业务,那完全可以主动教他使用网银或手机、电话银行;而倘若通过数据甄别出理财者交易的风险倾向,那么就可以更有针对性地设计理财信息,而不是像现在这样向用户频繁提供对方不需要的信息……
大数据时代,“影响了企业评估其拥有的数据及访问者的方式,促使甚至迫使公司改变其商业模式,同时也改变了组织看待和使用数据的方式”。《大数据时代》的这段话重新定义了数据的价值。
当我们建立了对“大数据”更广义的定义后,就会发现,大数据并不是谷歌、百度、Facebook、推特、门户、微博、微信们的专利。大数据隐藏在所有的信息化工具后面。生产、销售、管理的信息化产生大量副产品,过去这通常被浪费,就像富含稀土的铁矿石用来炼钢之后,矿渣总被毫不犹豫地扔掉。而今,每个企业都可以在这些“稀土矿渣”中发现财富。“数据的全部价值远远大于其最初的使用价值,在初次使用之后的每次使用中都会发现其新的价值”。每个企业在经营中产生的原始数据都可以通过重新统计和重组产生新的价值。
举个例子,每个超市都有用于防盗的监控设备,之前它只用来监控卖场的治安和员工的工作状态,而现在已经有企业用它来总结客户在商品前的停留时间和行走方式,据此调整商品的摆放方式。而各大商场,无一不掌握着各个经销商每天的所有交易明细。过去这些数据只充当结算的凭据。但如果将其进行深度开发,就能对顾客的消费行为有更清晰的了解,从而对卖场的布置、摊位的租金、经销商的返利数额等得出更精准的判断。有效应用大数据,还能让卖方在最短的时间内精准找到潜在买家并提供最周到的服务,就像本文开头提到的沃尔玛那样。
冲击大卖场
当然,正因为大数据的精准性和及时性,从长远来看,大数据的广泛使用会削弱大卖场存在的必要性。在新加坡,银行已经很少在底商设立大面积的营业厅,通常在一楼会有一个小门脸摆放几台自助柜员机,而主要业务搬到楼上的写字间,从而节省了昂贵的底商租金。
从国内近年来新开张的商业物业来看,影院、餐厅、美容、健身、娱乐等“亲历性”服务项目占有的面积正在不断增多,而单纯的商品销售面积正在不断减少,这也是苏宁、国美、万达等传统商业企业全面高调进军电商的原因。只有进入电商领域,他们才能积累更多的数据,为大数据时代的到来积累资本。传统商业如果不主动迎接大数据时代的到来,其地盘必将被成长于数字时代的电商所蚕食。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04