京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据大而无用
互联网的发展可以用数据来衡量,大数据被世界经济论坛称为是新的石油、新的资产类别,其革命性不亚于蒸汽机车、电网、钢铁、空调及无线电。
2005年 互联网的数据总量为 300 亿 GB,思科估计 2013年 的规模预计超过当年的 20 倍。1990年 代至 2005年 被视为是互联网的第一波浪潮,这波浪潮为我们带来了电子邮件、Web、网上搜索以及宽带。这第二波浪潮,就指望着大数据给经济提供动力了。
但有个小问题:尽管 Web 流量飙升,但经济正处于萧条期。得益于计算机和互联网的革命,自 1970年 代一直稳步增长且持续到 2000年 代的生产率,自 2005年 以来却出现下降,这正好是大数据冒出来的时间。
因此一些经济学家开始质疑,大数据是否具备第一波互联网浪潮的那种影响力,与几个世纪的工业革命更没法比。有一种理论认为,大数据业是通过调动现有企业为了客户进行竞争,从而让经济更加繁荣,而非创造新的根本性的机会。
当然,有些公司,如 Amazon 和 eBay 等的确是为客户而战。但其他的公司却在蚕食传统产业的市场,广告、媒体、音乐、零售等无一幸免。
明尼苏达大学的经济学家 Joel Waldfogel 认为,数字产业与实体界是此消彼长的关系,所以认为数字的崛起会给经济带来净增长是疯狂的。西北大学的经济学教授 Robert J. Gordon 则认为把大数据比作石油只是个噱头。上个世纪,石油让交通革命成为可能,如果有人认为个人数据堪比石油和汽车,那一定是没有体会到上个世纪的现实(汽车取代马匹,空运取代道路)。
但也有经济学家认为大数据的经济冲击只需几年就将到来—只要大学培养出相应的数据处理人才,并且数据驱动初创企业开始招兵买马。当然,衰退可能会以经济学家无法掌握的方式掩盖数据革命的影响。还有人甚至怀疑最终我们当前对大数据和 “云” 的理解框架可能只是一座海市蜃楼。
数据必须充分发挥经济潜力才有可能。当然,像营销、制药业现在每天都在大量应用数据。
masFlight 就是这样的公司。这家公司采用大量数据来帮助航空公司减少燃油消耗并改善总体性能。Josh Marks 是这家公司的 CEO,尽管他的第一个使命是帮助自己的客户与其他航空公司为了顾客而竞争,但他也相信像自己这类公司追求的效率最终应该能发展全球经济。
但他也承认,目前 Web 上大多数的裸数据流的经济价值有限:分析师手上掌握的,对特定行业有着深刻理解的专业数据有用得多。他认为现在对实时处理超大数据集能力的宣传有些言过其实。
有的经济学家认为,新技术的真正价值往往是很难评估的,大数据也许早已给经济带来好处了,只是没有算进官方的经济数据里。比方说,Hulu 上面的小猫视频和电视节目给网上冲浪者制造了欢乐,那么经济学家是不是应该想办法给此类无形活动评估一下价值啊?此类活动是不是推动了 GDP 的增长?
此外基础设施投资往往要花费数年才能回收。西北大学的经济学家 Shane Greenstein 说,1990年 的铺设高速互联网的投资也是在最近才开始获利。但是他也指出,相对于第一波浪潮对经济活动的影响,大数据革命带来的影响更难看清。这种影响有可能只是有延迟,也可能没有价值。
但是数字未来学家喜欢拿电网的崛起与之对比。其想法是无所不在的互联网让数据和 “云” 无所不在,就像插座让电无所不在一样。
数字的对比是诱人的。Harold L. Platt 在《The Electric City》一书中描述的 19 世纪末 20 世纪初芝加哥电力飙涨的情况令人马上联想到今天数据的增长。
但已经 68 岁的 Platt 并不同意这种简单的类比。他说电力给制造、家庭生活、交通、上层和底层社会带来的革命数据时代未必就能做到。
不过,在芝加哥那头通过手机接收采访的 Platt 发现自己也无法回避这股数据洪流。正打着电话的他收到了自己已成年的孩子发过来的短信。“我得短信回复他们,否则他们就不会回我。所以我也得随大流。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22