京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据大而无用
互联网的发展可以用数据来衡量,大数据被世界经济论坛称为是新的石油、新的资产类别,其革命性不亚于蒸汽机车、电网、钢铁、空调及无线电。
2005年 互联网的数据总量为 300 亿 GB,思科估计 2013年 的规模预计超过当年的 20 倍。1990年 代至 2005年 被视为是互联网的第一波浪潮,这波浪潮为我们带来了电子邮件、Web、网上搜索以及宽带。这第二波浪潮,就指望着大数据给经济提供动力了。
但有个小问题:尽管 Web 流量飙升,但经济正处于萧条期。得益于计算机和互联网的革命,自 1970年 代一直稳步增长且持续到 2000年 代的生产率,自 2005年 以来却出现下降,这正好是大数据冒出来的时间。
因此一些经济学家开始质疑,大数据是否具备第一波互联网浪潮的那种影响力,与几个世纪的工业革命更没法比。有一种理论认为,大数据业是通过调动现有企业为了客户进行竞争,从而让经济更加繁荣,而非创造新的根本性的机会。
当然,有些公司,如 Amazon 和 eBay 等的确是为客户而战。但其他的公司却在蚕食传统产业的市场,广告、媒体、音乐、零售等无一幸免。
明尼苏达大学的经济学家 Joel Waldfogel 认为,数字产业与实体界是此消彼长的关系,所以认为数字的崛起会给经济带来净增长是疯狂的。西北大学的经济学教授 Robert J. Gordon 则认为把大数据比作石油只是个噱头。上个世纪,石油让交通革命成为可能,如果有人认为个人数据堪比石油和汽车,那一定是没有体会到上个世纪的现实(汽车取代马匹,空运取代道路)。
但也有经济学家认为大数据的经济冲击只需几年就将到来—只要大学培养出相应的数据处理人才,并且数据驱动初创企业开始招兵买马。当然,衰退可能会以经济学家无法掌握的方式掩盖数据革命的影响。还有人甚至怀疑最终我们当前对大数据和 “云” 的理解框架可能只是一座海市蜃楼。
数据必须充分发挥经济潜力才有可能。当然,像营销、制药业现在每天都在大量应用数据。
masFlight 就是这样的公司。这家公司采用大量数据来帮助航空公司减少燃油消耗并改善总体性能。Josh Marks 是这家公司的 CEO,尽管他的第一个使命是帮助自己的客户与其他航空公司为了顾客而竞争,但他也相信像自己这类公司追求的效率最终应该能发展全球经济。
但他也承认,目前 Web 上大多数的裸数据流的经济价值有限:分析师手上掌握的,对特定行业有着深刻理解的专业数据有用得多。他认为现在对实时处理超大数据集能力的宣传有些言过其实。
有的经济学家认为,新技术的真正价值往往是很难评估的,大数据也许早已给经济带来好处了,只是没有算进官方的经济数据里。比方说,Hulu 上面的小猫视频和电视节目给网上冲浪者制造了欢乐,那么经济学家是不是应该想办法给此类无形活动评估一下价值啊?此类活动是不是推动了 GDP 的增长?
此外基础设施投资往往要花费数年才能回收。西北大学的经济学家 Shane Greenstein 说,1990年 的铺设高速互联网的投资也是在最近才开始获利。但是他也指出,相对于第一波浪潮对经济活动的影响,大数据革命带来的影响更难看清。这种影响有可能只是有延迟,也可能没有价值。
但是数字未来学家喜欢拿电网的崛起与之对比。其想法是无所不在的互联网让数据和 “云” 无所不在,就像插座让电无所不在一样。
数字的对比是诱人的。Harold L. Platt 在《The Electric City》一书中描述的 19 世纪末 20 世纪初芝加哥电力飙涨的情况令人马上联想到今天数据的增长。
但已经 68 岁的 Platt 并不同意这种简单的类比。他说电力给制造、家庭生活、交通、上层和底层社会带来的革命数据时代未必就能做到。
不过,在芝加哥那头通过手机接收采访的 Platt 发现自己也无法回避这股数据洪流。正打着电话的他收到了自己已成年的孩子发过来的短信。“我得短信回复他们,否则他们就不会回我。所以我也得随大流。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01