京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 如何才能把营销数据落到实处
在大多数公司,营销人员负责评估市场竞争。因此,将近60%的信息专员都会向营销部门报告分析数据,然而大多数营销人员并不能战略性地运用这些竞争分析,只是不断收集而已。换句话说,他们只是对现在进行“快照”,而无法前瞻。
很多分析师都会埋怨:他们的营销负责人太重视竞争对手的各项数据了。
大数据时代的崛起似乎加剧了这一趋势。从全球著名的市场调研公司Nielsen到美国咨询公司Gartner ,再到市场研究公司IMS,这些专业大数据提供者紧盯市场动向,随时描绘市场图景。众所周知,财富500强公司的营销人员非常善于分析竞争对手的市场份额数据,甚至能精确到小数点第二位。
毫无疑问,大数据以及分析学正在改变营销面貌。但是并没有让营销变得更富有战略性,不过是更精确了而已。之前只是用同一个广告到处轰炸式宣传,而如今大数据使得营销人员可以根据用户的个人偏好和特定消费媒介有针对性地向不同客户群体投放不同广告。其对当下营销表现的改变,就好像导弹对当下空战的改变一样,但正如军事专家所言,空袭并不能赢得战争。
时至今日,很多营销人员已经拥有很多前所未有的科技工具作为“武器”,又拥有极先进的数据“侦查”方法。但他们似乎经常缺乏有效的“战略计划”,缺乏根据对方行动评估未来局势并进行反击的能力。
然而,有为数不多的个别公司却可以利用这些数据,从竞争情报分析人员那里得到更多战略价值。
集中精力关注战略框架
在总部位于比利时的中型制药企业UCB,作为战略营销实践的一部分,Heresh Rezavandi和他的经理Michelle Maddix-Sovero正在领导一个年轻的战略情报部门。Rezavandi的战略预警办法是从公司现有战略开始入手的,借鉴竞争战略之父Michael Porter的战略框架,考虑到替代品、买家和供应商,将纷纭复杂的竞争信息和未来预测综合分析。这能够帮助团队保持努力的方向。
加入UCB之前,Rezavandi在一家制药咨询公司工作,在那里,他目睹了管理者根本不知道究竟需要什么,只会说:“拣重要的通通报上来。” Rezavandi表示:“在加入UCB之后,我很快意识到,这里和咨询公司不同,信息收集不过是一切的开端。”
让高管层参与进来
在总部位于美国俄亥俄州辛辛那提市,提供高度专业化商业服务的制服企业Cintas,拥有3万名员工。其中1600名经理和董事都在一个返情报的协作区内,这1600人来自全公司各个级别、各个地区以及各个业务部门,公司最高领导层也都在这个协作区里。负责该公司竞争情报部门的主管Troy Pfeffer表示:“你想要情报,就要自己参与情报创建。”
Troy特别推崇这一方式。他表示:“询问情报的人,通常对该情报已经有了相关了解。忽略这一情报来源会降低情报质量。而通过让询问情报的人加入该情报的创建,你将大大提升采取行动的可能性,深挖这个组织的情报文化。”
洞察先机
2014年,英国罗得岛州东部城市沃里克一家私营科技服务公司Atrion有了麻烦。这家公司创建于1987年,一直以来,其核心业务都是IT基础设施技术的销售、安装和后续支持,其收入的80%都来源于此。但是,随着云计算渐渐成长起来,Atrion的客户突然发现有了更便宜的选择。
幸运的是,云计算的迅速崛起并没有让Atrion措手不及。2012年,Atrion的情报分析人员鉴定指出,云计算将成为首号战略威胁。Dave Ramsden和他的团队立刻开始跟踪相关数据,不放过任何哪怕最微弱的危险信号。随着云计算的采用率开始增长,他们拉响了警报。
于是在2014年,Ramsden的团队开始建立五年计划,根据历史表现给出预期增长,并在商业基础设施方面将当前增长和预期下降的可能相结合,给出备选方案。Ramsden还利用当时公开可见的情报信息,描绘出了战略地图,分析说明其它科技服务公司在不断变化的市场中做出的战略决策。这促进团队提出许多批判性的问题:Atrion究竟想成为什么?继续紧抓硬件这一块吗?还是成为云服务公司呢?又或者演变成一家专业服务公司?
公司决定提高对服务销售的关注,多多咨询客户,用心理解客户所需的业务。同时公司开始创新服务产品,使得投资组合更加多样化。截至2015年6月的财政年度,Atrion整体总收入增长了约19%,而服务收入增长了44%。
形成假设——然后测试
Man-Wai Chow在化学公司Eastman领导战略情报工作,他的情报流程是由假设驱动的。这些关于主要产业力量的假设,让其团队得以提供可行的商务见解。假设通常始于企业拥有的某些信念,这种信念或对或错。作为战略情报领导,他的任务就是打磨这些信念,对其进行测试。
Man-Wei的团队发展了这些假设(即观点),然后确定具体的路标或者说是先行指标,努力去验证并尝试这些假设。这里不得不再次提到Michael Porter的战略模型,它往往会帮助我们获得一个更清晰的观点。Chow 表示:“我们经常会提出‘假设’,防止自己鼠目寸光。我们和业务部门也会紧密合作,深入洞察,提高决策质量。”
很多公司仍认为营销人员只需要负责执行战略,而不需要参与战略的制定。但营销人员远不止销售工作而已,他们还可以促进战略和业务的发展。
但营销人员都知道,营销已经不再只仅仅是做做广告,发发新闻稿了。那个营销人员只需要简单设计下优惠券就OK了的时代已经过去。今天的市场营销包括数据科学和分析部门,需要收集和分析大量交易型的(仍然是主要形式)和字符类型的(挖掘社交网络)用户数据,来设计“最优客户体验”。最新科技工具可以作为辅助,但是无法代替精明的战略思想家。正如Man-Wai Chow所说:“算法无法超越人类智慧。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06