
1进程和线程的概念
1.1什么是进程
一个进程就是在一个运行的程序,它有自己独立的内存空间,一组系统资源,每个进程的内部数据和状态都是独立的,例如在window是同时打开多个记事本,虽然它们所运行的程序代码都是一样的,但是所使用的内存空间是独立的,互不干扰.
1.2什么是线程
线程与进程相似,是一段完成某个特定功能的代码,是程序中单个顺序的流控制;但与进程不同的是,同类的多个线程共享一块内存空间和一组系统资源,而线程本身的数据通常只有微处理器的寄存器数据,以及一个供程序执行时使用的堆栈
1.3进程与线程的区别
1. 进程:每个进程都有独立的代码和数据空间(进程上下文) ,进程切换的开销大.
2. 线程:轻量的进程,同一类线程共享代码和数据空间,每个线程有独立的运行栈和程序计数器(PC),线程切换的开销小.
3. 多进程:在操作系统中,能同时运行多个任务程序.
4. 多线程:在同一应用程序中,有多个顺序流同时执行.
1.4线程创建的两种方式
采用继承Thread类创建线程
该方法比较简单,主要是通过继承java.lang.Thread类,并覆盖Thread类的run()方法来完成线成的创建.Thread 类是一个具体的类,即不是抽象类,该类封装了线程的行为.要创建一个线程,程序员必须创建一个从 Thread 类导出的新类.Thread类中有两个最重要的函数run()和start().
通过实现Runnable接口创建线程
该方法通过生成实现java.lang.Runnable接口的类.该接口只定义了一个方法run(),所以必须在新类中实现它.但是 Runnable 接口并没有任何对线程的支持,我们还必须创建 Thread 类的实例,这一点通过 Thread 类的构造函数
public Thread(Runnable target);来实现.
2 单线程和多线程性能比较
以使用蒙特卡罗概率算法求π为例,进行单线程和多线程时间比较
2.1什么是蒙特卡罗概率算法
蒙特卡罗法(Monte Carlo method)是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解,故又称统计模拟法或统计试验法. --百度百科
蒙特卡罗求算法求π
第一步
画正方形和内切圆
第二步
变换表达式
正方形面积As=(2R)^2
圆的面积Ac=πR^2
Ac/As=(2R)^2/πR^2
π=4As/Ac
令P=As/Sc,则π=4P
第三步
重复N次实验求平均值
在正方形区域内随机生成一个点A,若A落在圆区域内,M++
P=M/N
π=4P,N的取值越大,π的值越精确
2.2 java代码实现算法
N取值为10000万,多线程的数为100,每个线程执行100万次模拟实验
线程实现
import java.util.concurrent.CountDownLatch;
public class ProModel implements Runnable {
public int N;//随机实验的总次数
public static int M;//随机点落在圆中的次数
private int id;
private final CountDownLatch doneSignal;
OBJ semaphore;
public ProModel(int id,CountDownLatch doneSignal,int N,OBJ semaphore2){
this.id=id;
this.doneSignal=doneSignal;
this.N=N;
this.semaphore=semaphore2;
M=0;
}
public void run(){
int tempM=0;
for(int i=0;i
if(isInCircle()){
tempM++;
}
}
synchronized (semaphore) {
add(tempM);
}
doneSignal.countDown();//使end状态减1
}
public void add(int tempM){
System.out.println(Thread.currentThread().getName());
M=M+tempM;
System.out.println(M);
}
//随机产生一个在正方形区域的点,判断它是否在圆中
public boolean isInCircle(){
double x=Math.random();
double y=Math.random();
if((x-0.5)*(x-0.5)+(y-0.5)*(y-0.5)<0.25)
return true;
else
return false;
}
public static int getTotal(){
return M;
}
}
多线程Main实现
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class MutliThread {
public static void main(String[] args) throws InterruptedException {
long begin=System.currentTimeMillis();
int threadSize=100;
int N=1000000;
OBJ semaphore = new OBJ();
CountDownLatch doneSignal = new CountDownLatch(threadSize);
ProModel[] pros=new ProModel[threadSize];
//设置特定的线程池,大小为threadSizde
System.out.println(“begins!”);
ExecutorService exe = Executors.newFixedThreadPool(threadSize);
for(int i=0;i
exe.execute(new ProModel(i+1,doneSignal,N,semaphore));
try{
doneSignal.await(); //等待end状态变为0, }catch (InterruptedException e) {
// TODO: handle exception35
e.printStackTrace();
}finally{
System.out.println(“ends!”);
System.out.println(4*(float)ProModel.getTotal()/(float)(threadSize*N));
}
exe.shutdown();
long end=System.currentTimeMillis();
System.out.println(“used time(ms):”+(end-begin));
}
}
class OBJ{}
单线程Main实现
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SingleThread {
public static void main(String[] args) {
long begin=System.currentTimeMillis();
int threadSize=1;
int N=100000000;
OBJ semaphore = new OBJ();
CountDownLatch doneSignal = new CountDownLatch(threadSize);
ProModel[] pros=new ProModel[threadSize];
//设置特定的线程池,大小为5
System.out.println(“begins!”);
ExecutorService exe = Executors.newFixedThreadPool(threadSize);
for(int i=0;i
exe.execute(new ProModel(i+1,doneSignal,N,semaphore));
try{
doneSignal.await(); //等待end状态变为0, }catch (InterruptedException e) {
// TODO: handle exception35
e.printStackTrace();
}finally{
System.out.println(“ends!”);
System.out.println(4*(float)ProModel.getTotal()/(float)(threadSize*N));
}
exe.shutdown();
long end=System.currentTimeMillis();
System.out.println(“used time(ms):”+(end-begin));
}
}
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05