京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业面对海量实时数据却不知所措
在人人喊着要“掘金”的大数据时代,企业的市场营销人员应该是最直接受益者。数据显示,83%的市场营销专业人士认为他们的品牌在数字化平台上应该更加活跃。然而,“梦想很丰满,现实很骨干”。虽然企业现在拥有的可供利用的数据量空前巨大,但是65%的市场营销专业人士都无法整合多个数据源—— 如社交媒体、博客、网站访问和搜索数据,这使他们无法确定采取什么行动。
来自TNS的最新研究显示,很多企业都未能利用企业的大数据信息来帮助自己做出明智的决策。TNS的“市场监测(Marketing Monitor)” 研究访问了遍布亚太区的2700多位市场营销专业人士。根据该研究,数据的总量之大、种类之多让人感觉雾里看花,难以从中获取有价值的洞察,使企业更难以利用数据来为自己服务,形成竞争优势。
在中国的企业正向数据驱动的数字化平台以及追踪研究系统投入更多资源,以帮助他们理解富有挑战性的线上世界。这些数据大量涌入市场营销部门,有三分之一(31%)的市场营销人员目前的职责包括管理实时数据。
然而,65%的中国市场营销人员承认,整合不同来源的数据相当困难。有这么多的可用数据,市场营销人员都知道他们应该能够实时做出决策,但很多人在整合传统和数字化数据的道路上艰难挣扎。
TNS中国首席执行官刘锡芸认为,面对如此大量的数据,许多企业都不知所措。“在线上平台方面,中国是世界上最先进的国家之一,其结果是产生了数量空前大的消费者行为数据。 好消息是,市场营销人员有丰富的信息可以加以利用。而不那么利好的消息是,要确定如何处理和分析这些数据以揭示对企业有价值的、隐藏在数据背后的洞察,并不总是一件容易的事情。”
由于对实时数据进行分析存在各种困难,许多市场营销人员都转而依赖传统的测量方法。根据TNS的研究,销售提升指标仍然是企业评估市场营销活动的成败的首选方法。尽管这些指标很重要,它们都是回顾性的,并不赋予企业能力来追踪消费者对市场营销活动的持续反应、对正在发生的问题采取行动,并做出改变以将他们的市场营销活动向更有利的方向推进的能力。
此外,现有的市场研究方法并不能帮助市场营销人员做出快速、明智的决策。根据我们在中国的调查,市场营销人员认为市场研究分析“可操作性不够”(64%)及“太慢”以致无法使用(61%)。
TNS品牌和沟通亚太区董事总经理Nitin Nishandar解释说:“从数据中提取有价值的洞察的困难意味着市场营销人员采用了一种”后视镜式“的方法,即只能在营销活动进行数周甚至数月之后才能了解其表现和品牌资产变动情况。实时数据需要给到实时价值——否则它就只是让人分心的噪音。”
在整合来自数字化渠道的洞察方面,一些国家领先于其他国家。尽管拥有一些世界上最先进的社交媒体平台,中国在数字化渠道洞察整合方面其实是滞后的,只有三分之一(30%)的市场营销人员在做市场营销决策时使用社交媒体监测。新加坡遥遥领先,55%的市场营销人员在进行社交媒体数据的监测。马来西亚紧随其后,有50%的市场营销人员在监测该数据,而印尼则有43%的市场营销人员进行社交媒体的数据监测。
各国家使用社交媒体监测来为决策提供依据的市场营销人员比例:
1.新加坡 – 55%
2.马来西亚 – 50%
3.泰国 – 46%
4.韩国 – 45%
5.印尼 – 43%
6.澳大利亚 – 43%
7.印度 – 42%
8.中国 - 30%
对有能力利用数字化数据的企业来说,对数字化数据的挖掘有潜力为企业开启通向未来机会之门。TNS的“市场监测(Marketing Monitor)” 研究的一个重要发现是,在亚洲,有三分之二(67%)的市场营销人员对传统市场研究不能提供预测性洞察这一事实感到沮丧。新的方法显示,数字化数据如能得到恰当的整合,不仅可以帮助营销人员做出实时决策,还可以预测品牌资产。
Nitin继续说道:“随着亚太区变革步伐的加快,我们需要开始使用数据来关注未来,而不是仅仅测量现状。追踪社交和搜索数据,以形成‘预测框架’的基础,能够比市场调研数据或销售数据早几个月提供洞察。这就使营销人员有能力及时预测品牌资产的变化,从而能够及时采取措施来应对这些变化。在这样一个多变的环境,能够有这样一幅‘望远镜’来眺望未来,对企业而言是一个非常宝贵的竞争优势。这种优势任何一个企业都不能忽视。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29