
大数据“镇守”互联网金融平台风控重地
“大数据”、“互联网金融”早已不是新鲜词汇,并且如今时常能见到二者同时出现。尤其是作为互联网金融行业“命门”的风控,如今也越来越多的与大数据相结合。
此前,阿里就推出了面向社会的信用服务体系芝麻信用,除了接入阿里的电商数据和蚂蚁金服的互联网金融数据外,还与外部的公共机构、商业机构达成广泛的合作;国内第一家风险控制与反欺诈云服务提供商同盾科技,也一直立足于大数据来为合作方提供反欺诈服务;今年5月份,在线金融搜索服务融平台360开始也推出了一个名为“天机”的风控系统,该系统会根据身份认证、还款意愿和还款能力三个大维度,给申请贷款的用户进行信用评分,依据分值来决定是否应放款。
融360联合创始人、CEO叶大清在接受《证券日报》记者采访时表示,“互联网金融不能简单将传统金融服务模式往线上一搬了之。互联网金融的核心竞争力并不是营销获客能力,而是大数据风控能力。”而同盾科技CSO兼执行副总裁在接受采访时还强调,公司在大数据反欺诈领域还提出“跨行业联防联控”的概念,“‘坏人’不单单只做一个行业,他们经常在不同的行业里面游走,而我们通过大数据的手段,会发现这些‘坏人’,最终帮大家做一个相关的防控。”
大数据风控可降低逾期率
所谓大数据风控,指的是通过运用大数据构建模型的方法对借款人进行风险控制和风险提示。大数据风控系统之所以成为可能,是因为每个人在网上留下的数据痕迹,通过大数据的分析和预测技术,就可以智能化判断一个人的信用风险。
叶大清表示,公司一直广泛地收集数据,并深入挖掘数据中衍生的特征,这些特征会被分类成多个维度,如风险特征、用户偏好、用户意愿、用户属性等。通过丰富的用户特征,融360综合应用传统金融模型和机器学习模型,搭建整体天机系统的架构,并通过模型构建贷款推荐、风险预测、实时定价等一系列应用服务产品。
用户在互联网上留下的足迹有社交媒体上的动态、电商消费行为、网站浏览痕迹。据融360首席风控官李英浩李英浩介绍,通过风控模型的梳理和分析,就能得出有关贷款行为的需求、申请什么类型贷款、申请金额,逾期及违约可能性等结论,这构成了对个人用户进行信用风险评估。用户看不到自己的信用分值,只能看到最终获批的额度、利率和期限。
“天机风控系统的诞生,意味着融360逐渐演变成金融机构的技术服务合作伙伴,对于用户和合作伙伴来说,融360最大的价值是隐藏于后台的专业风控模型和风控管理能力”,叶大清对《证券日报》记者表示。
值得一提的是,信用评估自动化加速了整个信贷决策过程,申请人可以更迅速地得到答复,提高了从申请到获批整个流程的效率。此外,贷款获批率也得到了显著提升,同一类用户,用抵押物、收入流水证明等粗放式的传统风控方式,贷款获批率在15%左右,而使用大数据模型结合人工后获批率可以达到30%以上。至于贷款的逾期率,以12个月违约风险举例,通过天机模型筛选的用户,逾期率比没有经过筛选的低一半。
大数据可提升反欺诈效率
在P2P行业中,大数据也为反欺诈起到突出的作用。作为国内第一家风险控制与反欺诈云服务提供商同盾科技,也一直立足于大数据来为合作方提供反欺诈服务。
马骏驱在接受《证券日报》记者采访时就如何运用大数据进行反欺诈,以P2P网贷行业中场景举例谈道,网贷行业中有个特殊的群体,叫作“羊毛党”,即当某平台推出产品或活动时,该群体只“薅取”奖励并没做实际投资行为。“有一个客户跟我说过,他花了大概500多万元去做推广,结果发现80%多都是羊毛党,把他们的好处都拿走了。”针对类似这部分群体,同盾科技在风控时就会考虑,在资产端这些人群是否有过诈欺的情况。“如果是普通的羊毛党,我们还是会让他注册,但是奖励就不会给了;如果他下一步准备做坏事,我们就会把他隔绝在外。”同时,他认为,虽然羊毛党的存在对于一些P2P平台可以造成短时间内价值迅速增加的表象,但为了行业的健康发展,还是应把这些“水分”去掉。
此外,他表示同盾科技也是征信公司的一个补充。“因为有些时候,一些人可能在很多平台都有一些长期逾期的情况,我们掌握了相关的信息。但是,在央行或其他征信机构是没有任何信息的。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10