
大数据“镇守”互联网金融平台风控重地
“大数据”、“互联网金融”早已不是新鲜词汇,并且如今时常能见到二者同时出现。尤其是作为互联网金融行业“命门”的风控,如今也越来越多的与大数据相结合。
此前,阿里就推出了面向社会的信用服务体系芝麻信用,除了接入阿里的电商数据和蚂蚁金服的互联网金融数据外,还与外部的公共机构、商业机构达成广泛的合作;国内第一家风险控制与反欺诈云服务提供商同盾科技,也一直立足于大数据来为合作方提供反欺诈服务;今年5月份,在线金融搜索服务融平台360开始也推出了一个名为“天机”的风控系统,该系统会根据身份认证、还款意愿和还款能力三个大维度,给申请贷款的用户进行信用评分,依据分值来决定是否应放款。
融360联合创始人、CEO叶大清在接受《证券日报》记者采访时表示,“互联网金融不能简单将传统金融服务模式往线上一搬了之。互联网金融的核心竞争力并不是营销获客能力,而是大数据风控能力。”而同盾科技CSO兼执行副总裁在接受采访时还强调,公司在大数据反欺诈领域还提出“跨行业联防联控”的概念,“‘坏人’不单单只做一个行业,他们经常在不同的行业里面游走,而我们通过大数据的手段,会发现这些‘坏人’,最终帮大家做一个相关的防控。”
大数据风控可降低逾期率
所谓大数据风控,指的是通过运用大数据构建模型的方法对借款人进行风险控制和风险提示。大数据风控系统之所以成为可能,是因为每个人在网上留下的数据痕迹,通过大数据的分析和预测技术,就可以智能化判断一个人的信用风险。
叶大清表示,公司一直广泛地收集数据,并深入挖掘数据中衍生的特征,这些特征会被分类成多个维度,如风险特征、用户偏好、用户意愿、用户属性等。通过丰富的用户特征,融360综合应用传统金融模型和机器学习模型,搭建整体天机系统的架构,并通过模型构建贷款推荐、风险预测、实时定价等一系列应用服务产品。
用户在互联网上留下的足迹有社交媒体上的动态、电商消费行为、网站浏览痕迹。据融360首席风控官李英浩李英浩介绍,通过风控模型的梳理和分析,就能得出有关贷款行为的需求、申请什么类型贷款、申请金额,逾期及违约可能性等结论,这构成了对个人用户进行信用风险评估。用户看不到自己的信用分值,只能看到最终获批的额度、利率和期限。
“天机风控系统的诞生,意味着融360逐渐演变成金融机构的技术服务合作伙伴,对于用户和合作伙伴来说,融360最大的价值是隐藏于后台的专业风控模型和风控管理能力”,叶大清对《证券日报》记者表示。
值得一提的是,信用评估自动化加速了整个信贷决策过程,申请人可以更迅速地得到答复,提高了从申请到获批整个流程的效率。此外,贷款获批率也得到了显著提升,同一类用户,用抵押物、收入流水证明等粗放式的传统风控方式,贷款获批率在15%左右,而使用大数据模型结合人工后获批率可以达到30%以上。至于贷款的逾期率,以12个月违约风险举例,通过天机模型筛选的用户,逾期率比没有经过筛选的低一半。
大数据可提升反欺诈效率
在P2P行业中,大数据也为反欺诈起到突出的作用。作为国内第一家风险控制与反欺诈云服务提供商同盾科技,也一直立足于大数据来为合作方提供反欺诈服务。
马骏驱在接受《证券日报》记者采访时就如何运用大数据进行反欺诈,以P2P网贷行业中场景举例谈道,网贷行业中有个特殊的群体,叫作“羊毛党”,即当某平台推出产品或活动时,该群体只“薅取”奖励并没做实际投资行为。“有一个客户跟我说过,他花了大概500多万元去做推广,结果发现80%多都是羊毛党,把他们的好处都拿走了。”针对类似这部分群体,同盾科技在风控时就会考虑,在资产端这些人群是否有过诈欺的情况。“如果是普通的羊毛党,我们还是会让他注册,但是奖励就不会给了;如果他下一步准备做坏事,我们就会把他隔绝在外。”同时,他认为,虽然羊毛党的存在对于一些P2P平台可以造成短时间内价值迅速增加的表象,但为了行业的健康发展,还是应把这些“水分”去掉。
此外,他表示同盾科技也是征信公司的一个补充。“因为有些时候,一些人可能在很多平台都有一些长期逾期的情况,我们掌握了相关的信息。但是,在央行或其他征信机构是没有任何信息的。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27