京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据怎样改善及合理化消费
现在大数据是个热门的概念,但是能把这个概念说清楚却不是一件容易的事情。首先,不同的派别对大数据的定义有所不同;其次是大数据还在初期阶段,将来还有很长的路要走,所以现在下边界严格的定义还太早。不管怎样,大数据的的确确正在改变我们的生活,无论我们在乎不在乎,这是无法拒绝的趋势。
在消费领域,大数据运用得可能最快,这是因为直接与经济效益相关,你不用的话,竞争对手就跑到前面去了。举个例子,美国沃尔玛公司在通过大量的POS销售数据的分析发现,购买纸尿片的顾客中,有相当多的一部分人,同时也会购买啤酒这种产品,于是,他们对货架排列进行了调整,在纸尿片旁边就摆上各式各样的啤酒供选择,这样做之后,销售额又有所提升。任何营销专家运用自己的智慧与逻辑都无法给出这样的建议,一般看来,啤酒和尿布是顾客群完全不同的商品,怎么可能扯到一起呢?但是,沃尔玛的信息系统是最先进的,海量的POS销售数据经过数个月的数据挖掘与分析,得到的结论就是这样。事后,专家对这件事进行了研究,发现原因其实很简单:许多妻子让老公出门去买尿布,老公们一般都会顺便买些啤酒犒劳自己;因此啤酒和尿布一起购买的机会是最多的。虽然弄清楚了原委就这么简单,但是如果通过人力去一张张检查并分析大量的POS销售单据,来找到这样的关联性是几乎不可能的;别忘记,电脑最适合干这样的事情。
大数据,简单的来说,就是运用电脑技术,尤其是数据存储与分析比对的方法,来从海量的资料中找出隐藏在其中的一些关联性;这些关联性对制定相应的销售策略调整,来实现增强经济收益,提高用户体验的结果。再举个例子,最近一两年,广州体育中心经常举办足球比赛,球迷也顺便在进场时购买自己喜欢球队的队服以示支持。对于商家来说,肯定恒大的队服卖得最好,可是尺码的比例分配怎么办?如果平均分配肯定不科学,各五分之一S码、M码、L码、XL码和XXL码?结果很可能是一些码数很快断货,而另外一些码数无人问津;由于球赛有时效性,所以补货来不及。怎么办?请体育服装商店的销售专家来制定不同码数的比例结果会好一些,但是仍然会发生上面的问题,因为服装店的客流人群与看比赛的多少有些差异。最好的办法就是根据过往的球赛到场观众数据来分析并制定码数比例,然后根据今期的实际销售数据差异对下一期销售数据进行调整,很快就能让不同码数和数量达到最优合理化水平。
以上是商家通过大数据增效的两个例子,对于个人消费者来说,能否利用大数据来获益呢?其实也没想得那么复杂及高难度。举例来说,最近想去北京旅行,可是究竟哪天机票最便宜呢?这个问题如果去各个航空公司查询,就变得很复杂繁琐了,费时费力还可能落掉便宜的,即使去携程,也只能查阅某天的不同航空公司差价(其实同时段的不同航空公司差别不大,很早及很晚可能比白天略便宜点)。但是如果你用百度搜索“广州 北京”的关键词,你会发现大数据的好处就是人家替你整理好一周的机票趋势,不但有去程的价格变化曲线,连回程都为你想到了。如图1所示,清明节的回程机票最便宜,然后你再根据自己喜欢的航空公司去选择最适合的航班。
大数据这东西说近不近说远不远,就看你怎么用了。现在电商都喜欢做各种促销活动,比如买够多少减多少,或者送券什么的,但如果你够仔细,就该先去购物搜索比下价钱,然后再看叠加促销活动是否真优惠。笔者也上过几次当,所以不得不学精明点。这样的比价搜索背后就是搜索抓取不同电商的实时价格,然后重新排列整理呈现的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29