
大数据怎样改善及合理化消费
现在大数据是个热门的概念,但是能把这个概念说清楚却不是一件容易的事情。首先,不同的派别对大数据的定义有所不同;其次是大数据还在初期阶段,将来还有很长的路要走,所以现在下边界严格的定义还太早。不管怎样,大数据的的确确正在改变我们的生活,无论我们在乎不在乎,这是无法拒绝的趋势。
在消费领域,大数据运用得可能最快,这是因为直接与经济效益相关,你不用的话,竞争对手就跑到前面去了。举个例子,美国沃尔玛公司在通过大量的POS销售数据的分析发现,购买纸尿片的顾客中,有相当多的一部分人,同时也会购买啤酒这种产品,于是,他们对货架排列进行了调整,在纸尿片旁边就摆上各式各样的啤酒供选择,这样做之后,销售额又有所提升。任何营销专家运用自己的智慧与逻辑都无法给出这样的建议,一般看来,啤酒和尿布是顾客群完全不同的商品,怎么可能扯到一起呢?但是,沃尔玛的信息系统是最先进的,海量的POS销售数据经过数个月的数据挖掘与分析,得到的结论就是这样。事后,专家对这件事进行了研究,发现原因其实很简单:许多妻子让老公出门去买尿布,老公们一般都会顺便买些啤酒犒劳自己;因此啤酒和尿布一起购买的机会是最多的。虽然弄清楚了原委就这么简单,但是如果通过人力去一张张检查并分析大量的POS销售单据,来找到这样的关联性是几乎不可能的;别忘记,电脑最适合干这样的事情。
大数据,简单的来说,就是运用电脑技术,尤其是数据存储与分析比对的方法,来从海量的资料中找出隐藏在其中的一些关联性;这些关联性对制定相应的销售策略调整,来实现增强经济收益,提高用户体验的结果。再举个例子,最近一两年,广州体育中心经常举办足球比赛,球迷也顺便在进场时购买自己喜欢球队的队服以示支持。对于商家来说,肯定恒大的队服卖得最好,可是尺码的比例分配怎么办?如果平均分配肯定不科学,各五分之一S码、M码、L码、XL码和XXL码?结果很可能是一些码数很快断货,而另外一些码数无人问津;由于球赛有时效性,所以补货来不及。怎么办?请体育服装商店的销售专家来制定不同码数的比例结果会好一些,但是仍然会发生上面的问题,因为服装店的客流人群与看比赛的多少有些差异。最好的办法就是根据过往的球赛到场观众数据来分析并制定码数比例,然后根据今期的实际销售数据差异对下一期销售数据进行调整,很快就能让不同码数和数量达到最优合理化水平。
以上是商家通过大数据增效的两个例子,对于个人消费者来说,能否利用大数据来获益呢?其实也没想得那么复杂及高难度。举例来说,最近想去北京旅行,可是究竟哪天机票最便宜呢?这个问题如果去各个航空公司查询,就变得很复杂繁琐了,费时费力还可能落掉便宜的,即使去携程,也只能查阅某天的不同航空公司差价(其实同时段的不同航空公司差别不大,很早及很晚可能比白天略便宜点)。但是如果你用百度搜索“广州 北京”的关键词,你会发现大数据的好处就是人家替你整理好一周的机票趋势,不但有去程的价格变化曲线,连回程都为你想到了。如图1所示,清明节的回程机票最便宜,然后你再根据自己喜欢的航空公司去选择最适合的航班。
大数据这东西说近不近说远不远,就看你怎么用了。现在电商都喜欢做各种促销活动,比如买够多少减多少,或者送券什么的,但如果你够仔细,就该先去购物搜索比下价钱,然后再看叠加促销活动是否真优惠。笔者也上过几次当,所以不得不学精明点。这样的比价搜索背后就是搜索抓取不同电商的实时价格,然后重新排列整理呈现的结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07