
大数据变现之琅琊榜是怎样炼成的
在如今的大数据领域,大数据变“现”已经成为人们最为关注的话题,所谓的变“现”,就是利用对数据的收集处理后给企业以决策引导,从而为企业带来真实的价值和财富。而想要变现,其中一大难点就是如何在特定的场景应用合适的数据和大数据技术。那么,在传统行业之一的影视行业中,大数据是如何发挥其作用的呢?
上周,IT168主办的2015 SACC中国系统架构师大会于周六完满落幕,大会的三天议程中,许多专家及业内人士到场交流学习。在SACC的“大数据变现”专场中,微瑞思创联合创始人兼首席架构师周像金到场进行了题为《影视及地产大数据的变“现”之道》的演讲。微瑞思创是一家以大数据技术为基础的信息技术公司,主要为企业提供大数据产品、技术、营销及分析咨询服务。周像金结合其经验及公司案例为大家讲述了大数据在影视和地产行业的应用场景,而他提到大数据如何在影视行业变现时,解释了一部成功的影视剧是打造出来的,下面就跟小编来一起回顾一下。
《琅琊榜》是近期备受关注的一部电视剧,其火爆程度堪比当年的《甄嬛传》,红遍大街小巷。那么这部剧如此火爆是否是巧合呢,恰巧公司选的是这样的题材、剧情、演员,而恰巧又很对大多数人的口味?如果不是的话,那么在其从选题拍摄到宣传播放的过程中,大数据又起到了什么作用?其实,在影视行业的生命周期中,大数据有几种典型的应用场景,而用对了方法和场景,大数据就能够真正为企业带来价值。
场景一:投资选材
在寻找剧本阶段,投资方很早就会监测各小说的interactive property(交互属性),并且提前与作者协商买断版权。《琅琊榜》很多年前就已经是起点中文网人气非常高的连载小说,影视公司将其监测到后,即果断向作者买断版权,再继续规划演员、编剧,挑选合适的拍摄地点,最后进入拍摄制片阶段。
在大数据技术应用前,很多投资选材的决定都是公司老板思考决定,并无太多参考数据。而大数据出现后,能够帮助公司监测早期数据。例如,目前各大网络平台有哪些小说热度较高,它们分别影响的是哪类人群,这类人群是否是制片公司本身在意的人群,他们的收入水平如何。影视公司能够在一部合适小说的萌芽阶段连同它的作者一起买断,这种先期的机遇在以前是可遇不可求的,而大数据技术已经能够帮助公司做这类决策,数据的价值也由此体现。
场景二:策划投拍
在以前在剧本策划阶段,编剧常常会遇到一个问题,一般小说内容很长,若电视剧将其完整展现甚至需要上百上千集,那么编剧根据什么来精简剧本?应该将删掉哪些剧情,将哪些人物挑选出来?此时的编剧就需要数据支持。周像金在演讲中以一个真实案例为大家解释了大数据是如何辅助决策的:“有一部明年会上映的电视剧,我们在帮它精简剧本的时候做了哪些事呢?我们会挖掘这部小说一千多集中每一集大家的评论,踩的多还是点赞的多,他们大多在赞哪一个桥段,将各种相关数据一一收集梳理,挑选最受欢迎的一些内容,给编剧作为参考。编剧即可围绕这些内容编写剧本。”
场景三:拍摄推广
在拍摄过程中,制片方一般会先行播放一些片花和海报,这些内容能够产生很多具有参考价值的数据,例如这部剧的剧情、某个演员、某个桥段等等是否受欢迎。大数据能够帮助这些公司收集统计观众意向以及在社交媒体平台上的讨论量,根据这些数据影视公司能够更精确的制作和排片,讨论多的热剧,就可以将其排到黄金时段。
除此以外,周像金表示,以上内容又能够引发另外一个需求点,即利用数据来精准营销预算。周像金说:“我们曾在一个美国的合作伙伴处了解到,他们每年都有大量的营销预算需要投入,但投入的营销预算都是营销公司所报出的数值,影视公司并不知道投入这些金额的钱是否值得。此时,他需要监测舆论的变化来判断投资是否正确,而我们公司能够很好的为其提供舆论监测,告诉他投资效果是否如营销公司所讲述的那样。而这家公司就是钢铁侠的投资公司之一,DMG Media。”
利用大数据,影视公司从最初选材能够占得先机,以较低价格买断小说,而后编写剧本,到最后拍成宣传,每个步骤都经过了精确的信息收集数据计算。一切未知因素都被分散到各个步骤中,一一以数据的收集分析来应对,极大降低了投资制作风险。甚至连演员的选择,都可以事先将试妆照发布到互联网,收集观众们的评价而做出最终决策。如此根据观众的口味制作出来的影视剧,还愁收视惨淡吗?
如何搭建适应场景的大数据系统?
大数据是在海量行业数据的基础上去伪存真,去解决某一个特定问题。而“某一行业数据能解决所有问题”,这个命题本身就是伪命题,大数据一定要依附于某一具体行业,要能够解决这个行业的某一具体问题。
对于传统行业的从业者来说,他们对大数据技术名词并不敏感,对于大数据技术的接受度也有限。他们关心的首要问题是大数据能解决他们的哪些问题,只有能应对真实问题,大数据对他们来说才是有价值的。其次,传统行业用户对于如何保护数据并不了解,用户害怕自身数据被盗、被卖,数据安全和数据隐私是他们担心的另一大问题。所以,区别于传统的系统架构,想要服务于此类传统企业,建立的系统架构一定要十分稳定才能有更长久的发展。周像金在演讲中和大家分享了要搭建一个合适的大数据系统架构,他们多年来得到的经验步骤:
1、了解客户希望解决什么样的问题
2、我们能够给他开发什么样的应用
3、我们可以用哪种技术来支撑这个应用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22