京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据变现之琅琊榜是怎样炼成的
在如今的大数据领域,大数据变“现”已经成为人们最为关注的话题,所谓的变“现”,就是利用对数据的收集处理后给企业以决策引导,从而为企业带来真实的价值和财富。而想要变现,其中一大难点就是如何在特定的场景应用合适的数据和大数据技术。那么,在传统行业之一的影视行业中,大数据是如何发挥其作用的呢?
上周,IT168主办的2015 SACC中国系统架构师大会于周六完满落幕,大会的三天议程中,许多专家及业内人士到场交流学习。在SACC的“大数据变现”专场中,微瑞思创联合创始人兼首席架构师周像金到场进行了题为《影视及地产大数据的变“现”之道》的演讲。微瑞思创是一家以大数据技术为基础的信息技术公司,主要为企业提供大数据产品、技术、营销及分析咨询服务。周像金结合其经验及公司案例为大家讲述了大数据在影视和地产行业的应用场景,而他提到大数据如何在影视行业变现时,解释了一部成功的影视剧是打造出来的,下面就跟小编来一起回顾一下。
《琅琊榜》是近期备受关注的一部电视剧,其火爆程度堪比当年的《甄嬛传》,红遍大街小巷。那么这部剧如此火爆是否是巧合呢,恰巧公司选的是这样的题材、剧情、演员,而恰巧又很对大多数人的口味?如果不是的话,那么在其从选题拍摄到宣传播放的过程中,大数据又起到了什么作用?其实,在影视行业的生命周期中,大数据有几种典型的应用场景,而用对了方法和场景,大数据就能够真正为企业带来价值。
场景一:投资选材
在寻找剧本阶段,投资方很早就会监测各小说的interactive property(交互属性),并且提前与作者协商买断版权。《琅琊榜》很多年前就已经是起点中文网人气非常高的连载小说,影视公司将其监测到后,即果断向作者买断版权,再继续规划演员、编剧,挑选合适的拍摄地点,最后进入拍摄制片阶段。
在大数据技术应用前,很多投资选材的决定都是公司老板思考决定,并无太多参考数据。而大数据出现后,能够帮助公司监测早期数据。例如,目前各大网络平台有哪些小说热度较高,它们分别影响的是哪类人群,这类人群是否是制片公司本身在意的人群,他们的收入水平如何。影视公司能够在一部合适小说的萌芽阶段连同它的作者一起买断,这种先期的机遇在以前是可遇不可求的,而大数据技术已经能够帮助公司做这类决策,数据的价值也由此体现。
场景二:策划投拍
在以前在剧本策划阶段,编剧常常会遇到一个问题,一般小说内容很长,若电视剧将其完整展现甚至需要上百上千集,那么编剧根据什么来精简剧本?应该将删掉哪些剧情,将哪些人物挑选出来?此时的编剧就需要数据支持。周像金在演讲中以一个真实案例为大家解释了大数据是如何辅助决策的:“有一部明年会上映的电视剧,我们在帮它精简剧本的时候做了哪些事呢?我们会挖掘这部小说一千多集中每一集大家的评论,踩的多还是点赞的多,他们大多在赞哪一个桥段,将各种相关数据一一收集梳理,挑选最受欢迎的一些内容,给编剧作为参考。编剧即可围绕这些内容编写剧本。”
场景三:拍摄推广
在拍摄过程中,制片方一般会先行播放一些片花和海报,这些内容能够产生很多具有参考价值的数据,例如这部剧的剧情、某个演员、某个桥段等等是否受欢迎。大数据能够帮助这些公司收集统计观众意向以及在社交媒体平台上的讨论量,根据这些数据影视公司能够更精确的制作和排片,讨论多的热剧,就可以将其排到黄金时段。
除此以外,周像金表示,以上内容又能够引发另外一个需求点,即利用数据来精准营销预算。周像金说:“我们曾在一个美国的合作伙伴处了解到,他们每年都有大量的营销预算需要投入,但投入的营销预算都是营销公司所报出的数值,影视公司并不知道投入这些金额的钱是否值得。此时,他需要监测舆论的变化来判断投资是否正确,而我们公司能够很好的为其提供舆论监测,告诉他投资效果是否如营销公司所讲述的那样。而这家公司就是钢铁侠的投资公司之一,DMG Media。”
利用大数据,影视公司从最初选材能够占得先机,以较低价格买断小说,而后编写剧本,到最后拍成宣传,每个步骤都经过了精确的信息收集数据计算。一切未知因素都被分散到各个步骤中,一一以数据的收集分析来应对,极大降低了投资制作风险。甚至连演员的选择,都可以事先将试妆照发布到互联网,收集观众们的评价而做出最终决策。如此根据观众的口味制作出来的影视剧,还愁收视惨淡吗?
如何搭建适应场景的大数据系统?
大数据是在海量行业数据的基础上去伪存真,去解决某一个特定问题。而“某一行业数据能解决所有问题”,这个命题本身就是伪命题,大数据一定要依附于某一具体行业,要能够解决这个行业的某一具体问题。
对于传统行业的从业者来说,他们对大数据技术名词并不敏感,对于大数据技术的接受度也有限。他们关心的首要问题是大数据能解决他们的哪些问题,只有能应对真实问题,大数据对他们来说才是有价值的。其次,传统行业用户对于如何保护数据并不了解,用户害怕自身数据被盗、被卖,数据安全和数据隐私是他们担心的另一大问题。所以,区别于传统的系统架构,想要服务于此类传统企业,建立的系统架构一定要十分稳定才能有更长久的发展。周像金在演讲中和大家分享了要搭建一个合适的大数据系统架构,他们多年来得到的经验步骤:
1、了解客户希望解决什么样的问题
2、我们能够给他开发什么样的应用
3、我们可以用哪种技术来支撑这个应用
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08