京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据了解气候变化:它们是怎样运作的
气候变化确实威胁着我们的星球,全球都应感受到它的毁灭性后果。美国航空航天局(NASA)气候模拟中心(NCCS)高性能计算负责人Daniel Duffy博士,介绍了大数据对气候变化研究工作的至关重要性。
NCCS为大规模的NASA科学项目提供高性能计算、存储和网络资源。其中许多项目涉及全地球性天气和气候模拟。这些模拟生成的海量数据是科学家永远读取不完的。因此,益发有必要提供分析和观察这些模拟产生的大数据集的方法,更深入了解气候变化等重大科学问题。
大数据和气候变化:它们是怎样运作的?
大数据和气候研究息息相关;没有海量数据就无法进行气候研究。
NCCS拥有名曰“探索号超级计算机”的计算机集群,主要目标是提供必要的高性能计算和存储环境,以满足NASA科学项目的需求。探索号计算机正在开展一系列不同的科学项目,其中的大部分计算和存储资源被用于天气与气候研究。
探索号计算机是一种高性能计算机,专门为极大规模紧密耦合的应用而设计,是硬软件紧密结合和相互依存的系统。虽然该计算机没有被用于从卫星等遥感平台采集数据,但该计算机运行的许多大气、陆地和海洋模拟都需要观测数据的输入。使用探索号计算机的科学家不断收集输入其模型的全球性观测数据。
然而,如果科学无法以有效手段观测和比对数据,即使向它们提供海量数据也毫无意义。NASA全球建模和模拟办公室(GMAO)增强性动画就是这方面的范例,该办公室利用多方来源的观测信息驱动天气预报。
GMAO的GEOS-5数据模拟系统(DAS)将观测信息与建模信息融合,以生成任何时间内都最为精确和质地统一的大气图像。每6小时的累计观测超过500万次,并对气温、水、风、地表压力和臭氧层的变量进行比对。模拟观测分八大类型,每类对不同来源的变量进行测量。
数据处理
气候变化模型需要具有大量存储和数据快速接入且数据不断增加的计算资源。为满足这一要求,探索号计算机由多个不同类型的处理器组成:79200个英特尔Xeon核心、28800个英特尔Phi核心和103680个Nvidia图像处理器(GPU)CUDA核心。
探索号计算机的总计算能力为3.36万亿次,或每秒3,694,359,069,327,360次浮点运算。为使大家更好地理解这一规模的计算能力,该计算机可在一秒钟内完成活在世上的每个人以每秒将两个数字相乘的速度连续运算近140个小时的运算量。
除了计算能力外,探索号计算机还具有约33拍字节(petabyte)的磁盘存储空间。典型的家庭硬盘容量为一兆兆(terabyte)字节,因此,该计算机的存储能力相当于33000个这类磁盘。如果用它存储音乐,你可以编排一个长度超过67000年而不重复的演奏清单。
NCCS每年都对探索号计算机进行升级。随着其服务器和存储的老化,在四或五年后替换而不是继续运行部分设备实际上能够提高效率。例如2014年年底至2015年年初利用升级的计算机群取代了探索号计算机2010年升级的设备。在地面空间、功率和冷却包络相同的情况下,升级后的NCCS可将计算能力提高约7倍。退役设备通常会转变用途,用于内部支持和其他业务或大学等外部站点,包括马里兰大学巴尔的摩分校(UMBC)和乔治梅森大学(GMU)。
数据映射:气候变化与预测
NCCS生成的数据推动了不同重要研究和政策文件的起草工作。
这一数据使人们能够就我们星球的气候变化影响进行更知情的对话,并有助于决策机构针对气候预测制定出适用战略与行动。例如,该数据已被用于气候变化专门委员会(IPCC)推出的评估报告。NCCS从事和NASA科学可视化工作室观测的数据模拟,介绍了IPCC第五次评估报告提出的气候模型,对气候和降雨预计在整个21世纪的变化方式做了说明。
于2005年袭击了美国墨西哥湾沿岸的卡特里娜飓风突显了准确预报的重要性。虽然它造成了巨大损失,但要不是预警预报给人们留出了适当准备时间,损失就会严重得多。如今,NCCS的超级计算机主要负责GMAO全球环流建模,其分辨率比卡特里娜飓风时提高了10倍,因而能够更准确地观察飓风内部,并有助于对其强度和规模做出更精确的估计。这意味着气象学家能够更深入地了解飓风的走向及其内部活动,这对于就卡特里娜飓风这类极端天气做出成功规划和准备至关重要。
此外,观测系统模拟试验(OSSE)还利用全球气候模型的输出成果模拟NASA提出的下一代遥感平台,从而向科学家和工程师提供了虚拟地球,以便在制作新的感应器或卫星之前研究大气遥测的新优势。
未来的气候变化数据
数据是NASA的主要产品。卫星、仪表、计算机甚至人员都可能频繁进出NASA,但数据尤其是地球观测数据具有永驻价值。因此,NASA必须不仅让其他NASA的站点和科学家,而且要让全球都用上它生成的数据。
仅时时生成的数据量就构成了一大挑战。在研究系统的科学家都难以使用数据集的今天,NASA以外的人们获得可用数据更是难上加难。因此,我们开始研究创建一项气候分析服务(CAaaS),将高性能计算、数据和应用编程接口(API)相结合,以便为在现场与数据共同运行的分析程序提供接口。换句话说,用户可就他们关心的问题提问,并利用NASA系统的运行进行分析,随后将分析结果返回用户。由于分析结果的规模小于生成它的原始数据,这一系统将减少经不同网络传送的数据量,而更重要的是,API可以大大减少用户和数据间的摩擦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29