京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据失败案例之七宗罪
“我们正处于开始阶段,想了解下其他人正在做什么,有哪些成功案例。”Liu说:“而所有的失败案例,也是我们必须学习并加以警惕的。”
很多人有着和Liu一样的想法。Family Dollar Stores Inc.(美国知名折扣零售商,总部位于北卡罗来纳的夏洛特,最近刚被另一家折扣连锁店Dollar Tree Inc.收购)的企业架构总监David Kropman也基于同样原因参加了这次会议。“我们刚开始大数据的探索,想了解正确的应用场景,同时防止自己重蹈其他公司的覆辙。”Kropman表示。
Sicular的报告给出了足够明晰的信息,可以让Kropman和Liu回去分享给各自的团队,避免犯同样的错误。
Kropman说:“大数据项目的失败不单单是因为某个原因,而是由多个因素一起导致的。”
对于大数据项目的失败,Sicular总结出7个主要原因,并划分为三个大类:战略、技能和分析。
战略方面的失败
1.组织惰性。某家旅游公司系统通过web日志数据的挖掘来提升客户洞察。结果证明,用户在浏览网站之后,随后的消费行为模式与管理层所认为的不一致。当团队汇报此事时,管理层认为不值一提。但是,该团队并没有放弃,并通过严密的A/B测试,回击了管理层的轻视。
这个案例的最终结果,不是每个CIO都能期盼的。但是,有一点是可以确定的:做好和管理层打交道的准备,让他们充分理解大数据是什么以及相应的价值。要说对CIO们有什么建议的话,Sicular认为,不要在失败的项目上过多纠缠,重新启动一个新的。
2.选择了错误的应用场景。一家保险公司想了解日常习惯和购买生命保险意愿之间的关联性。由于随后觉得习惯太过于宽泛,该公司将调查范畴限定到是否吸烟上。但是,工作仍然没有实质进展。“不到半年,他们就终止了整个项目,因为一直未能发现任何有价值的信息。”Sicular说。
这个项目的失败是由于问题的复杂性。在抽烟与否之间,该公司没有注意到还有大片灰色地带:很多人是先抽烟而后又戒烟了。在将问题简单化动机的驱动下,这个部分被忽略了。“他们不是医疗健康方面的专家。”Sicular分析到。为此,她提醒听众要对应用案例排定优先级,先易后难,循序渐进。
技术层面的失败
3.无法应对料想之外的问题。一家全球性公司的大数据团队发现了很多深刻的洞察,并且计划通过云让全公司共享。“为此,他们启动了一个云中的项目。”Sicular说。
Sicular认为,这样做是有风险的 – 一个在受控的定制环境中获得成功的项目,未必能适应于生产环境中。“这个团队低估了效率方面的损耗。由于网络拥塞的问题,无法满足全球各个分支顺畅提交数据运行分析的需求。”Sicular分析说。
该公司应该仔细思考下如何支撑大数据项目,梳理所需的技能并协调各IT分支的力量进行支持。“由于网络、安全或基础设施的问题,已经有太多的大数据项目栽了跟头。你必须事先想清楚,需要哪些方面的人手加入到项目中来。”Sicular表示。
4.缺乏大数据分析技能。一家零售公司的首席执行官不认同亚马逊规模化、扁平化的服务模式,因此让CIO构建一个客户推荐引擎。项目最初的规划是半年为期,但是团队很快认识到诸如协同过滤(collaborative filtering)之类的概念无法实现。为此,一个团队成员提出做一个“假的推荐引擎”,把床单作为唯一的推荐产品。
这个假引擎的工作逻辑是:买搅拌机的人会买床单,买野营书籍的人会买床单,买书的人会买床单。就是如此,床单是唯一的、默认的推荐品。
尽管可笑,这个主意其实并不坏,默认的推荐也能给企业带来销售上的提升。但是,由于大数据相关技能的缺失,真正意义上的引擎未能实现。Sicular表示,这是需要很长时间探索和积累的。尽管过程曲折而漫长,不过不用担心,大数据的推进是有明确阶段划分的,对CIO们来说可以有针对性地加以应对。这些阶段包括:
·管理高层表示支持
·大数据战略规划形成
·进行各种测试和验证
·流程上线并不断完善(Sicular称之为战术阶段)
·投资回报开始显现,企业真正体会到大数据的价值(Sicular称之为战略阶段)
·技术领先的企业开始构建真正的数据产品(Sicular称之为转型阶段)
数据分析本身的失败
5.对数据过于相信。2008年,Google第一次开始预测流感就取得了很好的效果,比美国疾病预防控制中心(Centers for Disease Control and Prevention)提前两礼拜预测到了流感的爆发。但是,几年之后,Google的预测比实际情况(由防控中心根据全美就诊数据推算得出)高出了50%。“媒体过于渲染了Google的成功,出于好奇目的而搜索相关关键词的人越来越多,从而导致了数据的扭曲。”Sicular说。
因此,CIO在拿到数据之后,应该从不同角度进行加以审视,确保对数据的来源、验证方法、控制手段以及是否有脏数据等问题都能胸有成竹。
6.提出了错误的问题。一家全球领先的汽车制造商决定开展一个情感分析项目,为期6个月,耗资1千万美元。项目结束之后,该厂商将结果分享给经销商并试图改变销售模式。然后,所得出的结果最终被证明是错误的。
“项目团队没有花足够的时间去了解经销商所面临的问题或业务建议,从而导致相关的分析毫无价值。”Sicular说。
对此,Sicular提到了决策分析中的“满意度(satisficing)”模型 -- 即放弃对最优结果的偏执,基于具体的情境,找到足够好的解决方案。“耐下性子,去真正理解问题以及企业可能从中获得的收益。”Sicular解释说。
7.应用了错误的模型。为了寻找可供借鉴的案例,一位在银行工作的博士研究了其他行业的大数据成功应用。最终,他的目光落在了电信行业的客户流失预测模型上。
该银行从电信业聘请了一位专家,后者也很快构建了评估用户是否即将流失的模型。Sicular表示,当时已进入评测验证的最后阶段,模型很快就将上线,而银行也开始准备给那些被认为即将流失的客户发出信件加以挽留。但是,为了保险起见,一位内部专家被要求对模型进行评估。
这位银行业专家很快发现了令人惊奇的事情:不错,那些客户的确即将流失,但并不是因为对银行的服务不满意。他们之所以转移财产(有时是悄无声息的),是因为感情问题 -- 正在为离婚做准备。
了解模型的适用性、数据抽象的级别以及模型中隐含的细微差别,这些都是非常具有挑战性的。“这是大数据分析的关键之一。”Sicular表示。为了大数据项目的成功,CIO还必须从道德、伦理和心理的角度进行思考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19