京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网金融怎么做大数据
数据是所有互联网平台极其重要的资产,其应用包括三个场景:数据集成、数据分析与数据共享,但互联网金融平台有其特别的属性。
核心指标是人、货、场
大数据在英文里叫Big Data,何为Big?这个Big不仅仅指数量庞大,还指类型繁多、处理速度快以及价值可挖掘潜力大,这四个纬度共同构成了数据之“大”。不管从哪方面入手,都首先要求集成大量数据,在数据量大且类型多样的基础上才可进行第二步的分析与研究。
在互联网金融行业,对一个网贷平台来说,需要集成的数据很多,总体可分为人、货、场。
“人”方面的指标,包括新用户与老用户数量、活跃用户、沉默用户、睡眠用户,提现金额、充值金额、成交金额、还款金额、待收金额,新用户首充、首投成本,留存率,以及来自PC端、APP端、微信端不同渠道的各类指标等,这是与“人”相关的各类数据,价值可挖掘潜力巨大,且多是核心指标。
“货”方面的指标,包括发标数量、种类、融资额、标期、利率、融资速度等,“标期”与“利率”是投资者关注的重点,“融资速度”则是平台必须紧盯的要素。
“场”方面的指标,包括平台网站及移动端的浏览次数(PV)、独立访客(UV)、访问时长、跳出率等,这些指标对监测网站流量与用户行为具有重要价值。
可以说,大数据应用的基础是大量数据的集成与汇聚,这要求必须有强大而稳定的系统加以抓取和存储,只有覆盖面足够广、类型足够多且数量足够大时,下一步的分析与研究才能得以实现。
让数据成为侦察兵
相信很多人都知道上世纪90年代沃尔玛超市关于“啤酒与尿布”的大数据案例,而在目前互联网金融行业中,互联网端与资产端的大数据应用均受到各平台的高度关注,不过,从目前的整体情况来看,互联网端的应用和落地速度更快一些,为互联网端的运营提供决策支持成为其重要的应用范畴。
举几个例子,比如,根据获取的上月份的新增用户数、成交金额、待收金额等核心指标,预测下一月份各项指标的表现,若实际业绩未达预期,则可进一步通过数据从各个侧面分析原因。譬如,从PC端、APP端、微信端等渠道层面分析,前后两月新用户、老用户活跃频率与投资额变化,可甄别出何种渠道何种用户投资额出现了环比下降,这将为下一步渠道层面的营销推广策略提供重要的数据参考基础和价值。
本人之前曾撰文强调过移动金融战略的重要性,这一战略的制定与实施也离不开数据的支撑与分析。我们从系统抓取的PC、APP、微信三大渠道的分析注册来源数据中分析发现,PC端仍是注册和引流的主要阵地,占比最大,其次是APP端,微信端占比仍较小;在投资金额上,APP端显示出强劲的发展势头,在投资占比上已经超越了PC端,占比超过65%。从数据的挖掘与分析中,可显著看出移动端的发展趋势,这也为平台制定移动金融战略提供了扎实和可靠的数据支撑,从这一层面上讲,大数据可谓互联网金融平台的核心资产,愈发显示出其战略地位。
以上是平台运营与战略层面的大数据应用,在具体的产品运营上,许多指标也可发挥其“侦察兵”的作用。其中,“融资速度”便是一个十分关键的指标,它高度反映了投资者在安全性、利率与期限等各要素的综合考量后做出的决定,融资速度越快显示用户越青睐该产品。譬如,最开始我们推出某款新产品时,融资速度仅为400元/分钟左右,速度与人气未达预期,在此数据分析的基础上,决策层采用了相应措施改善用户体验、提升产品吸引力,这一指标在一周后便飙升至13000元/分钟左右。这是大数据技术为产品决策提供支持的重要应用。
期待中国版“开放数据项目”
独木不成林,百花方为春。大数据产业的繁荣与发展,除了大规模与高效的集成和分析之外,还必须有数据的共享与开放,这是这一产业的未来。
事实上,欧美在数据开放上已经走在了中国的前列,值得我们借鉴。开放数据项目(Open Data Program)是奥巴马政府于2009年提出来的战略计划,旨在开放与人们息息相关的数据,涵盖农业、气象、金融、就业、教育、能源等近50个分类40多万原始数据文件,这些海量的数据蕴含着巨大的商业和社会价值,能被所有人接触到,并从数据开放中各取所需。此外,英国、法国等政府也实施了开放数据项目。根据报告,2010年以来英国政府Open Data网站的人均访问页面数增长了285%,总访问量比法国和美国的同类网站还要高。英国政府通过高效使用公共大数据技术每年节省约330亿英镑,相当于英国每人每年节省约500英镑。
目前,中国在这方面还比较落后,具体到互联网金融行业,也多是第三方机构在做数据的集成,各平台根据意愿做数据共享。我们平台目前就与网贷之家、网贷天眼、京北金融、零壹财经等业内第三方机构实现了数据的共享与对接,以求更好地促进行业数据共享与价值挖掘,推动大数据在互联网金融行业的应用步伐
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08