
大数据变革再认识
大数据的应用从需求角度出发,是物联网的兴起。随着互联网逐渐过渡到物联网,网络中互联的主体可以不再是人,可以是智能终端、传感器,乃至可穿戴设备。人们的各方面信息正通过无处不在的物联网被采集、汇总和辨析,人类的生活最终进入虚拟化。数据得到爆发式增长,且成本越来越低。大数据革命正在对世界产生巨大的系统性影响和深远意义。早在2012年美国就发布了《大数据研究和发展计划》,并成立了“大数据高级指导小组”。欧盟也正在力推《数据价值链战略计划》,英国发布了《英国数据能力发展战略规划》,日本《创建最尖端IT国家宣言》和韩国的“大数据中心战略”也陆续出台。
上世纪80年代,未来学家托夫勒在那本闻名世界的《第三次浪潮》一书中就预言过:“如果说IBM[微博]的主机拉开了信息化革命的大幕,那么大数据才是第三次浪潮的华彩乐章。”因此,大数据作为未来国家发展的基础设施,我国不应该落后于其他大国。可喜的是,国家级《关于促进大数据发展的行动纲要》于2015年8月19日正式通过,标志着我国已经启动了大数据的后发之势。因此,最为这一过程的莅临者更多是谈几点我对大数据的几点体会。
世界的本质是数据
大数据有诸多定义,从麦肯锡的技术定义到维基百科的一个范性的概括,再到IDC(国际数据公司)被广泛接受的四个特性——4V,即海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)和巨大的数据价值(Value)。大数据告诉了我们,现在以及未来的社会,数据至关重要,数据成为我们分析、决策的前提和基础。
何为数据?就是有根据的数字编码,这是人类度量世界万物的一个尺度。早在古埃及,人类已经学会了通过数据来计量财富和日常的生活。欧洲的文艺复兴后,数据开始进入人类的意识形态,可以刻画自然乃至人文规律。随着近现代信息技术的发展和数字化进程的日益深入,数据逐渐脱离了仅仅作为刻度表征的特性,成为世界万物的量化映射。世界可以通过数据来表示,人类也可以通过数字化的信息对世界进行再认识,数据最终实现了主体地位,是客观存在的一个体系。这也验证了古希腊哲学家毕达哥拉斯“数是万物的本原”的思想,世界的一切关系皆可用数据来表征。
大数据是方法论
如果说大数据是方法论,更多是分析、解决问题的一次变革。数量经济学告诉我们,一个经济过程的刻画,背后潜在的原理是通过一般模型出发,参数靠近理论在样本的空间内进行估计和检验,实现经济过程的模型简化,来探讨和发现一种因果关系。因此这一过程难以避免分析主体依据变量对样本进行必要的加工或调整,而大数据实现了用数据说话。先前分析问题的方式是一种小样本的思维模式,建立在分析问题信息相对不全面的前提之上(样本数据往往具有“一次性”)。
大数据理论的提出,本身基于海量数据,是一种全数据的思维方式,通过数据挖掘来获得数据本身的含义,Let data say!因此,大数据强调的是整体、多样、关联、动态、开放、平等的新思维,通过关系的相关性来变革认识事物的方法。同时通过海量存储、云计算、数据挖掘等信息技术实现思维理解的物理转化。
大数据是国家整体竞争力的体现
大数据是国家未来现代化发展的基础设施,因此大数据的实现必然是高投入、高技术门槛、周期长、资源匹配效率高的建设过程。不仅涉及建设的软硬件,而且关于日后的管理、运营和相关服务的配套,是国家整体实力的体现。从广义层面上讲,大数据是由海量数据集合和对这些数据进行存储、处理、分析的技术所组成的综合性概念。那么从大数据的概念上理解,大数据基础设施的建立必须形成以大数据为产业链条、纵横交错的生态环境。纵向来看,处于底层的是IT技术的开源项目,在这之上的是基础架构、证析和应用。横向来看,依次是基础架构、证析和应用,其中的应用又必须依靠数据源。这样看来,大数据真正从实现到最终的应用,国家层面需要在人才、财税、科技金融等方面设计有利于数据人才和数据产业发展的政策,逐步建立有利于大数据金融研究与发展的制度法规体系。
最后,我想强调当前数据的开放问题。大数据的前提一定要落脚到数据,当前我们国家存在数据割裂、统计口径不统一、数据重叠与失真等问题,这些都将严重制约未来大数据国家规划的全面实现。因此,当前重中之重需要对“数据孤岛”问题进行妥善解决,首当其冲是政府数据的整合和梳理,亟需中央政府各部委、地方政府间、各级监管机构等部门达成数据的流动与共享,同时在一定程度上实现部分数据的社会公布。因此,这需要政府进行顶层设计,建立法律规章,实现政府信息保密、私人信息私权向公权的让渡、统计口径的统一、数据清洗等工作。毕竟美国的数据开放,从1789年通过的《管家法》(House-keeping Act)到1966年通过的《信息自由法》(Freedom of Information Act),历时近200年彻底建立了相对完善的美国数据开放制度体系。同时,大数据也并非一定是灵丹妙药,它也肯定存在局限性(我们很难界定什么是“全数据”,只是一个相对概念),需要我们决策者用一种理性思维来认识并使用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29