
当大数据遭遇云计算
大数据正在彻底改变IT世界。那么,什么样的数据谈得上数据呢?
根据IDC的报告,未来十年全球大数据将增加50倍。仅在2011年,我们就将看到1.8ZB(也就是1.8万亿GB)的大数据创建产生。这相当于每位美国人每分钟写3条Tweet,而且还是不停地写2.6976万年。在未来十年,管理数据仓库的服务器的数量将增加10倍以便迎合50倍的大数据增长。
毫无疑问,大数据将挑战企业的存储架构及数据中心基础设施等,也会引发云计算、数据仓库、数据挖掘、商业智能等应用的连锁反应。2011年企业会将更多的多TB(1TB=1000GB)数据集用于商务智能和商务分析;到2020年,全球数据使用量预计暴增44倍,达到35.2ZB(1ZB=10亿TB)。
大数据面临的挑战
对于海量的数据信息,如何对这些数据进行复杂的应用成了现今数据仓库、商业智能和数据分析技术的研究热点。数据挖掘就是从大量的数据中发现隐含的规律性的内容,解决数据的应用质量问题。充分利用有用的数据,废弃虚伪无用的数据,是数据挖掘技术的最重要的应用。传统的数据库中的数据结构性很强,即其中的数据为完全结构化的数据,而目前数据最大特点就是半结构化,因此此类数据挖掘比面向单个数据仓库的数据挖掘要复杂得多。
谈到传统数据仓库的时候,大家不免就会买存储设备,选服务器,不管是IBM Power或者是Oracle架构的,这些其实都是在传统时代非常有名的数据库品牌,把它构建在一起,构成数据仓库,微软、COCNOS等都提供解决方案。
对企业业务来说,不光要有高扩展性,而且是动态的需求,能够让设备自由扩充,不用去管数据仓库、应用具体运行在这些机器的哪一台上,这些计算能力的耗费完全是根据业务的伸缩而来的。
传统的架构做这类的项目十年到二十年的时间,它们有一个特点,数据仓库的访问和传统的不同,所谓的不同就是查询特别大,查询的语句特别长、特别复杂,不像去银行的存提款只是在众多的记录中查询一两条,它符合大数据查询的特征,传统的查询索引作用非常有限。在数据库中涉及多张表的连接,同时还有汇总、算标准差等复杂的运算。但是相反它的并发请求不是很多,一个企业就是人再多,不会同时超过一千个业务分析员在分析数据。
因此,在数据仓库诞生的第一天,系统一直就有一个瓶颈,要把大查询分解成小任务,这些小任务由并行的服务器来完成,我们强调小的机器要多,而不要大的机器CPU数少。因此,数据仓库天生就是MPP、开放架构的CPU加上并行扩展横向扩展数量。
当大数据遭遇云计算
云计算为什么能盛行呢?在互联网领域应用系统的构建:客户群体是不确定的、系统规模不确定、系统投资不固定、业务应用有很清晰的并行分割特征、数据仓库系统的构建、数据仓库规模可估算、数据仓库的系统投资与业务分析的价值和回报相关、商业智能应用属于整体应用、Saas模式构建数据仓库系统。
大数据管理,分布式进行文件系统,如Hadoop、Mapreduce数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
云计算环境作为大数据处理平台
1.云计算环境中基本计算单元的分化
企业云计算平台上虽然有多个并行计算的CPU,但并没有创造出具有超强数据处理能力的超级CPU,因此云计算平台需要的是有并行运算能力的软件系统。同时,当所有用户的数据全部放在云端时,虽然存储容量可以很方便地扩充,但面对大量用户同时发起的海量数据处理请求,简单的数据处理逻辑已经无法满足需要。
可以看到,国内有相当多的电商企业,用小型机和Oracle扛了好几年,并请了全国最牛的Oracle的专家不停优化他的Oracle和小型机,初期发展可能很快,但是后来由于数据量激增,业务开始受到严重影响,最典型的例子无疑是京东商城前段时间发生的大规模访问请求宕机事件,因此他们开始逐渐放弃了Oracle或者MS-SQL,并逐渐转向MySQL+X86的分布式架构。
目前的基本计算单元常常是普通的X86服务器,它们组成了一个大的云,而未来的云计算单元里有可能有存储单元、计算单元、协调单元,总体的效率会更高。
2、对系统稳定性的需求
在应对大规模访问的时候有一些系统稳定性的追求,来自很多方面,来自网络稳定性、数据库稳定性。对系统而言,需要把握一个大原则,需要消除任何单点故障。不光是网络上单点故障,还有来自你呼叫中心里的单点故障,只要有单点故障一定要消除掉。因为对于电商行业而言,每一秒都是钱,电子商务业务如果宕机一个小时,损失多少是可以算出来的,电商行业需要非常全面的技术系统监控报警系统。有时候你会发现你如果通过技术系统的监控去推导出你的技术发生问题已经晚了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25