京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“仙桃”集结 中国大数据产业生态谷正崛起
10月9日,市政府与英国ARM公司签署合作谅解备忘录,将在仙桃数据谷建立ARM产业生态园,推动全市集成电路设计企业的快速发展。
据了解,英国ARM公司在移动芯片领域已占领了90%左右的全球市场,成为苹果公司的供应商之一。
这家公司在仙桃数据谷建的ARM生态产业园在5年内将聚集起5000名IC设计人才。
“仙桃数据谷正在集合起一批大数据产业,并成为重庆最大的大数据产业群。”渝北区委书记沐华平说。
A “国际范”的“3+6”产业体系
“仙桃数据谷的产业是国际性的。”重庆仙桃数据谷投资管理有限公司董事长汪小平说,具体说来,就是在按照“大数据、小传感、海储存、云应用”的产业方向,布局建设“3+6”的产业体系。
汪小平解释说,这其中的“3”,就是以传感产业园、存储产业园、数据挖掘分析三大基础产业为支撑,“6”即打造金融大数据、健康大数据、教育大数据、设计大数据、跨境电商、城市管理大数据6个行业大数据应用产业园,最终形成龙头企业、核心企业集聚的全产业大数据生态圈。
汪小平说,每个产业板块都将采用“龙头企业、公共平台、4.0版孵化、投资机构、创新企业”五位一体的运营模式,同时结合云端办公、安全防卫等智能化办公体系以及各类服务与展示平台等,为“3+6”产业体系提供保障。
“国际范”是仙桃数据谷产业的特色。据介绍,在产业布局和招商中,数据谷面向国际大数据相关产业及国际大数据龙头企业进行招商,集聚全球资源,运用全球市场。
B 六大创新支撑平台保障产业群
在仙桃数据谷占地1000多平方米的智能样机创新中心里,3D打印机、贴片机等器械已经陆续安装到位,10月底正式投入使用。
这是由渝北区携手宏碁、纬创、中兴投资2000万元联合打造的样机中心,包含打样、3D打印、贴片、验证、测速等功能。
所谓打样,就是将智能终端的设计图进行3D打印,制造出样机进行试用。据宏碁股份有限公司自建云(重庆)应用中心总处长王明山介绍,以前重庆企业开发设计出一个智能终端,一般要跑到深圳或江苏昆山去打样机,往返至少需要两周;若是需要修改调整,甚至会耗费一个月。他说:“今后在仙桃数据谷打样,仅需2—3天,将大大降低时间成本。”
“这是数据谷打造的一个创新支撑平台。”沐华平说,在聚合大数据产业群中,渝北区决定,将在仙桃数据谷打造六大创新支撑平台,以助推数据谷及全区的大数据产业发展。
这六大创新支撑平台是——
消费者行为大数据分析库。由宏碁集团、法国EFG公司打造,将为创新产品设计提供消费者行为习惯、偏好及数据支撑。
ARM创新加速器。由ARM和中科创达合作组建,为初创公司及创新项目提供技术支持、培训指导、风险投资等服务。
产品外观设计平台。由惠普打造“渲染云”平台,为工业设计、智能硬件设计、服装设计等提供云资源及技术平台支撑。
智能样机生产平台。渝北与宏碁、纬创、中兴软创合作打造,拟建立国家级实验室,提供智能硬件设计打样、3D打印等服务。
智能语音识别系统平台。由科大讯飞建设,基于大数据和人工智能技术,形成高效易用的“教育云”和“语音云”平台。
样机营销平台。由谷歌、亿赞普建设,构建全球样机的“商业雷达”和“营销网络”。
“这六大创新支撑平台既为大数据产业集群服务和做好保障,其本身也是一大产业群。”沐华平说。
C 建全球人才培养产业群
在仙桃国际大数据谷的产业集群中,还有一项人才培养产业。
今年7月,渝北区携手美国西亚斯集团、重庆邮电大学共同打造大数据学院,重点在职业培训及研究生培养,开展大数据产业相关的短期或中期职业资格培训,设置大数据及其关联产业的技术、管理、金融三类课程方向,帮助培养掌握前沿大数据技术、拥有实践经验的人才。
前不久,渝北区政府又与微软(中国)有限公司、微软亚太科技有限公司签署战略合作备忘录,三方将在大数据平台、大数据学院、创新孵化加速器平台、大数据体验中心领域方面展开全面合作。
“按照战略合作协议,微软(重庆)大数据技术及产业创新基地、微软IT学院两大项目将落户仙桃数据谷。”汪小平说,特别是微软IT学院的落户,将为仙桃数据谷的人才培养产业注入活力。
汪小平说,微软已经决定,将把“微软IT学院”引入到仙桃数据谷的大数据学院,并将采取“境内+境外”、“线上+线下”、“教学+实训”及国际协同招生的模式,对大数据学院进行课程设置,让大数据学院可以到国外去招生、国内的学员通过线上教育听国外的课程等,还可以为跨国公司定制培养专业人才。
与此同时,由微软提供技术服务的国内数据中心在线服务平台——“世纪互联”将为大数据学院提供不低于10万名符合要求的教育工作者,微软还将派遣10名IT人才,为大数据学院提供智力支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22