京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百度西交大大数据竞赛冠军:大数据发展才刚刚起步
10月16日,百度与西安交通大学联合主办的大数据竞赛颁奖典礼在西交大隆重举行。本次赛事吸引了全国数十所一流大学的近900位选手组队参赛,经过5个月的激烈比拼,冠军团队最终凭借其精准清晰的程序结构以及优质完整的算法,经过评审成功摘得桂冠。亚、季军则由六支不同高校的参赛团队选手摘得。竞赛评委、百度知识图谱产品数据建设负责人牛正雨点评称“他们的大数据分析模型可媲美百度。”
西安交通大学校长王树国(左一)、百度副总裁朱光(右一)为冠军团队代表颁奖
颁奖仪式结束后,记者采访了冠军竞赛团队,选手们对此次赛事给予了高度肯定:“非常感谢百度能够组织这样一次成功的、有意义的高水平比赛。在整个比赛过程中,主办方提供了交流平台,方便选手之间进行相互的交流。同时,其它参赛的选手们大多是相关领域专家们的学生,能与这些高手队伍过招,我们也觉得非常荣幸。”据了解,冠军竞赛团队曾参加过2014年百度知识图谱大数据竞赛,在整个竞赛提供的两个子任务中获得两个第一名,一个第二名的好成绩。
大数据发展刚起步 路虽长但定会影响人们的生活
大数据是目前十分热门的几个研究领域之一,该领域每年都有着大量的技术创新。作为一个交叉学科,大数据不仅需要IT技术的支撑,更需要深厚的领域知识辅助分析。他们表示:“投身于大数据的研究是一个非常好的机会,希望能通过这个领域去接触更广更深更有意义的知识。这些大数据时代的科技产品仍在起步阶段,通过对大数据的进一步开发以及利用,未来的产品会更多样、更新颖同时也更具创造力。“大数据时代才刚刚到来,也还有很长的路要走,但我们相信大数据一定会在未来影响人们的生活。”
学术界牵手企业界 让数据得到运用人才获得发展
缺少数据常常是困扰学术界日常研究工作的一个重大难题,百度作为中国的三大互联网巨头之一将长期无偿地开放数据,这也受到了学术界的欢迎。冠军竞赛团队的代表称,非常希望同企业进行合作,共同开发和利用这些海量数据。由于这些数据是在真实的业务系统中产生的数据,够帮助学术界更好地发现一些实际生活的需求,让学术界与工业界实现工作更好地联系,真正的做到产学研相结合。
冠军团队代表获得本届大数据竞赛最高奖金
他们表示,很期待中国的各大互联网巨头们都能在将来开放出这样的一个平台。一方面可以提高科研任务在学生心中的兴趣。另一方面,也能够让来自不同院校间的学生有机会在一起交流。“通过这样一个大平台,企业也可以更好地了解学生,挖掘有潜力的学生作为企业的后备力量,同时对于我们学生来说,也可以更好地了解企业,深入企业的日常工作。”
百度将面向参赛的顶尖技术人才们提供了企业绿色直通车,以此实现他们到百度交流、实习、工作的愿望。冠军选手们也对记者说,十分希望将来能够有机会进入百度这样的互联网公司,同业界顶尖的大牛们一起交流、沟通,提升自我,增加自己的技术积累,为中国的互联网行业贡献自己的绵薄之力。百度校园品牌部负责人对此发表感言称“形式不拘一格为只为广纳天下大数据人才。”
获奖团队选手与百度大数据竞赛负责人合影
天量数据向选手发起挑战,冠军们称“很受锻炼”
为了让选手们真正体验到“实战”的感觉,百度为此次竞赛提供了同行业竞赛中最大的数据集。面对 十亿量级的原始数据,冠军团队选手称“相较以往的比赛,此次赛事的数据量扩大了许多,刷新了其参加数据挖掘比赛的数据量处理纪录,同时也对于模型算法的效率提出了更高的要求。实体关系抽取是学术界的一个热门研究话题,在整个关系抽取过程中,需要处理的关系非常多(例如:人物亲属的关系有数十种之多),而且这些关系既复杂,又容易混淆。”
他们还认为,数据预处理是数据挖掘的基础内容,大数据虽然数据足够多,但能够挖掘到宝藏的数据可能并不那么多。“如何从这海量数据之中进行清洗是我们团队在整个竞赛伊始就在讨论的问题”。冠军代表称,正是因为句子哈希化,去重,筛选关键词等预处理做法的应用,才为后续算法的执行效率,模型的训练速度等提供了保障。同时赞许到:“同其他竞赛比起来,百度的竞赛更接地气,不仅与目前学术界最新技术的研究方向相关,也契合了用户在日常使用过程的实际需求,是一个非常好的竞赛内容。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04