京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上篇介绍了SAS数据管理功能上,本篇介绍数据管理功能下,本篇主要内容包括如何利用set和output语句拆分数据集,数据集如何合并?以及如何使用SQL提取数据。
有时我们需要根据某一分类原则把数据行分别存放到不同的数据集。比如,我们希望把数据集a中的所有男生的观测放到数据集am中,把所有女生的观测放到af中,可以使用如下程序:
data am af;
set a;
select(sex);
when ('男') output am;
when('女') output af;
otherwise put sex='有错';
end;
drop sex; /*去掉sex这一列*/
run;
proc print data=am;run;
proc print data=af;run;
OUTPUT语句是一个可执行语句,它使得当前观测被写到语句指定的数据集中。这样,我们根据SELECT的结果把不同性别分别放到了两个不同数据集中。
OUTPUT语句还可以用来强行写入数据集而不必象我们在数据步流程图中说明的那样等到数据步最后一个语句完成。数据步中有了OUTPUT语句后数据步流程中不再有自动写入观测的操作,而只能由OUTPUT语句指定输出。不指定数据集名的OUTPUT语句输出到第一个结果数据集。比如下面的程序生成一个包含1到10的及其平方的有10个观测的数据集:
data sq;
do i=1 to 10;
j=i*i;
output;
end;
run;
proc print;run;
如果删去上面的OUTPUT语句则结果数据集中只有i=11,j=100的一个观测。
几个结构相同的数据集可以上下地连接到一起。
data classes;
set class1 class2 class3;
run;
有时我们需要在合并数据集时加入一个变量来指示每一个观测原来来自哪一个小数据集,这可以在SET语句的每一个数据集名后面加一个括号里面写上IN=变量名,变量名所给的变量取1表示观测来自此数据集,取0表示观测非来自此数据集。例如,我们把a数据集按男、女拆分成了am和af两个数据集并抛弃了性别变量,就可以用如下程序连接两个数据集并恢复性别信息:
data new;
set am(in=male) af(in=female);
if male=1 then sex='男';
if female=1 then sex='女';
run;
data new;
merge ssa ssb ssc;
run;
若数据集的观测顺序不一样,一般应该采用按关键字合并的办法,排序过程如下:
proc sort data=ssa;
by name;
run;
proc sort data=ssb;
by name;
run;
proc sort data=ssc;
by name;
run;
如果我们发现数据集中的某些数据值有错误或者现在的值已经改变了,我们可以从更正了的原始数据重新生成数据集,或者使用更有效的方法,即建立一个只包含新数据值的数据集,用此数据集修改原数据集。使用如下的DATA步中可以实现数据集的更新:
DATA 新数据集名;
UPDATE 原数据集 更新用数据集;
BY关键变量;
RUN;
例如,数据集C9501中王思明的语文成绩实际应该是91分,张红艺性别应为男,可以先生成如下的只包含更正数据值的数据集,不需要改的观测不列入,不需要改的变量不列入或取缺失值:
data upd;
input name $ sex $ math;
cards;
张红艺 男 .
王思明 . 91
;
run;
然后,把原数据集C9501和更新用数据集UPD均按姓名排序:
proc sort data=c9501;
by name;run;
proc sort data=upd;
by name;run;
最后用UPDATE和BY更新得到新数据集NEW,
data new;
update c9501 upd;
by name;
run;
用PROC SQL作查询的最简单的用法如下
PROC SQL;
SELECT 第一项,第二项,…,第n项
FROM数据集
WHERE 观测选择条件;
RUN;
其使用方法与SQL语言基本一致
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31