京公网安备 11010802034615号
经营许可证编号:京B2-20210330
上篇介绍了SAS数据管理功能上,本篇介绍数据管理功能下,本篇主要内容包括如何利用set和output语句拆分数据集,数据集如何合并?以及如何使用SQL提取数据。
有时我们需要根据某一分类原则把数据行分别存放到不同的数据集。比如,我们希望把数据集a中的所有男生的观测放到数据集am中,把所有女生的观测放到af中,可以使用如下程序:
data am af;
set a;
select(sex);
when ('男') output am;
when('女') output af;
otherwise put sex='有错';
end;
drop sex; /*去掉sex这一列*/
run;
proc print data=am;run;
proc print data=af;run;
OUTPUT语句是一个可执行语句,它使得当前观测被写到语句指定的数据集中。这样,我们根据SELECT的结果把不同性别分别放到了两个不同数据集中。
OUTPUT语句还可以用来强行写入数据集而不必象我们在数据步流程图中说明的那样等到数据步最后一个语句完成。数据步中有了OUTPUT语句后数据步流程中不再有自动写入观测的操作,而只能由OUTPUT语句指定输出。不指定数据集名的OUTPUT语句输出到第一个结果数据集。比如下面的程序生成一个包含1到10的及其平方的有10个观测的数据集:
data sq;
do i=1 to 10;
j=i*i;
output;
end;
run;
proc print;run;
如果删去上面的OUTPUT语句则结果数据集中只有i=11,j=100的一个观测。
几个结构相同的数据集可以上下地连接到一起。
data classes;
set class1 class2 class3;
run;
有时我们需要在合并数据集时加入一个变量来指示每一个观测原来来自哪一个小数据集,这可以在SET语句的每一个数据集名后面加一个括号里面写上IN=变量名,变量名所给的变量取1表示观测来自此数据集,取0表示观测非来自此数据集。例如,我们把a数据集按男、女拆分成了am和af两个数据集并抛弃了性别变量,就可以用如下程序连接两个数据集并恢复性别信息:
data new;
set am(in=male) af(in=female);
if male=1 then sex='男';
if female=1 then sex='女';
run;
data new;
merge ssa ssb ssc;
run;
若数据集的观测顺序不一样,一般应该采用按关键字合并的办法,排序过程如下:
proc sort data=ssa;
by name;
run;
proc sort data=ssb;
by name;
run;
proc sort data=ssc;
by name;
run;
如果我们发现数据集中的某些数据值有错误或者现在的值已经改变了,我们可以从更正了的原始数据重新生成数据集,或者使用更有效的方法,即建立一个只包含新数据值的数据集,用此数据集修改原数据集。使用如下的DATA步中可以实现数据集的更新:
DATA 新数据集名;
UPDATE 原数据集 更新用数据集;
BY关键变量;
RUN;
例如,数据集C9501中王思明的语文成绩实际应该是91分,张红艺性别应为男,可以先生成如下的只包含更正数据值的数据集,不需要改的观测不列入,不需要改的变量不列入或取缺失值:
data upd;
input name $ sex $ math;
cards;
张红艺 男 .
王思明 . 91
;
run;
然后,把原数据集C9501和更新用数据集UPD均按姓名排序:
proc sort data=c9501;
by name;run;
proc sort data=upd;
by name;run;
最后用UPDATE和BY更新得到新数据集NEW,
data new;
update c9501 upd;
by name;
run;
用PROC SQL作查询的最简单的用法如下
PROC SQL;
SELECT 第一项,第二项,…,第n项
FROM数据集
WHERE 观测选择条件;
RUN;
其使用方法与SQL语言基本一致
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09