
大数据定义?7个经典观点让你看穿大数据
尽管大数据的定义各家歧异,但基本上,大数据领域里的每个人都同意一点:大数据不仅仅是指更多资料而已。这里有 7 个重要的大数据观点,希望大家不只是看着大数据的表皮,而能用不同的角度深入检视大数据。
1) 最基本的大数据定义
大数据的 3Vs 定义是目前为止最受推崇且最广为人知的说法。3Vs 由 Gartner 的分析师Doug Laney 最早在 2001 年时提出,分别代表资料量 Volume、资料传输速度 Velocity、资料类型 Variety。从那之后,便有人在 3Vs 之外陆续提出更多「V」, Veracity、Validity、Value、Visibility 等,其中又以 Veracity (真实性)最被普遍认同,合为”4Vs”。
2) 大数据即科技
大数据并不是什么崭新的概念,好几十年前 CERN 的科学家就在处理每秒上看 PB (Peta Bytes)巨量资料。那为什么一直到近几年“大数据”这颗原子弹才被投到科技圈,轰得人人叁句不离大数据?
现今要处理的资料量更庞大、资料产生跟处理速度更惊人、资料来源更多样,于是处理、储存大量资料的新技术跟工具快速发展,像是开源软体 Hadoop 跟 NoSQL 资料库。新科技诞生后,开发者跟使用者需要一个专业名词来与之前的科技作出区别,于是“大数据”一词因应而生。随之而来,大数据相关公司也雨后春笋般崛起,如国云数据等,成为中国大数据企业的先行者。
因此大数据不只是指资料,也指这些用来分析、处理巨量资料的新兴科技。
3) 大数据即不同的资料类型
现今”大数据“所涉及的资料已经和过去的资料已经不同了。根据 Hortonworks 公司战略副总裁 Shaun Connolly 的说法1,过去的资料大部分是人工手记下来的交易纪(Transactions),现在则是机器替我们记录下来的交易资料;除此之外,还有人们跟事物、企业间的互动资料(Interactions)。例如人们在网路上点击网页跟连结的纪录;最后则是机器自动生成、累积下来的观察资料(Observations),例如智慧型家居产品记录下来的室温变化等。
因此 Shaun Connolly 定义大数据是由交易、互动、观察资料所组成的资料型态。
4) 大数据即讯号
SAP 公司的高管 Steve Lucas 不以资料型态来看待大数据,而是以目的(intent)跟时机(timing)。在过去,企业收集到的资料只能在事情发生后引以为鉴,但现在企业收集到的是「新讯号」2,可以在事情发生前得到前兆跟提示,进而做出行动来影响事情结果。例如某品牌广告在社群网站上的「赞」数、点阅率如果跌落谷底,公司便可以预期接下来产品销售量一定也会惨不忍睹;同样的情形在过去时,公司所得到的数据就是产品发售后的销售量。
5) 大数据即机会
根据 451 Research 的数据专家 Matt Aslett,他将大数据定义为“以前因为科技所限而忽略的资料”,这个说法也受到许多人的赞同,因为多半提起大数据时,都是在讨论这些以前无法分析处理、囊括其中的资料。
“Big Data is data that was previously ignored because of technology limitations.”
其实他在文中并不是用 Big Data 一字,而是使用“Dark Data(暗数据)”。事实上许多公司都使用暗数据这个字,因为当资料变“暗”了,便表示一个漏掉的讯息、错失的机会,在企业策略中留下一个盲点4。一直以来,各企业雇用数据专家的目的就是希望能“点亮”这些暗数据(illuminate the Dark Data),观察到以前不曾注意过的趋势、做出更全面的考量。
也因此,SAP 曾经做过一个调查显示,将近 76% 的企业高管们视大数据为“机会”。个人也满喜欢这个观点,毕竟现在各公司在推动大数据的塬因,就是希望能掌握全面的讯息、把握住这些机会!
6) 大数据的哲学定义
著名的摄影师和出版人,前《Time(时代)》、《Life(生活)》、《National Geographic(国家地理)》杂誌摄影师,负责过有史以来最大摄影项目的 Rick Smolan ,在他的着作《大数据的人性面孔》(The Human Face of Big Data)一书中,则给了大数据一个最完美的哲学定义 ——“大数据是帮助地球建构神经系统的一个过程,在这系统中,我们(人类)不过是其中一种感测器。”
7) 大数据是旧东西的新噱头
也有部份人认为,“大数据”一词被严重滥用,大数据只是商业智慧(Business intelligence)或商业分析(Business analytics)演化后的新字。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23