
大数据可让供应链厂商度过“寒冬”
虽然大数据的概念已经渐入人心,但是以往靠订单进行粗放的规模生产模式,如果再不改造的话,最终的企业利润将荡然无存。
据报道,近日,中兴、华为的一级供应商深圳福昌电子技术有限公司陷入“倒闭风波”。加之之前一些供应商的倒闭,让人担忧供应链厂商遭遇“寒冬”。
目前而言,我们的制造业正面临着严峻的挑战。我们现有制造产业准备好迎接工业大数据洪流了吗?答案显而易见。虽然大数据的概念已经渐入人心,但是以往靠订单进行粗放的规模生产模式,如果再不改造的话,最终的企业利润将荡然无存。
目前庞大的供应链厂商正面临多方面的巨大挑战。
首先,由于供应层级过多,导致供应链错综复杂,库存余量存在普遍不合理的现象,要么过剩,要么不足,完全无法做到对流动间断性需求备件的库存的预测。
其次,供应商面临来自从消费端到各个生产制造销售环节的服务水平协议(SLA"s)的要求,难以支持售后服务产品生命周期管理的复杂性。从国内的智能手机配套的供应链厂商来看,产品或备件过时所引发的危机案例可见一斑。
最后,由于完全没有智能的供应链管理,计划执行力差,战略计划能力不足,产品与库存分布不合理,频繁加速发货成为了必然。
一般的供应链与优异的全数字供应链的区别在于,公司是否有能力高效地对全供应链实现监控、报警、预测及优化。面对越来越庞大的数据量,以及日益复杂的数据分析任务,通过工业大数据可建立智能工业,通过在全供应链的数字优化按需定制和信息实时访问,供应链将变得更灵活。
应对未来智能供应链可以从生产、需求、服务的三个大方面来实现。从市场需要着手,通过工业大数据,要分阶段实现需求预测,做好需求与库存对接的优化工作,让需求对口,实现分配最优。再者,加大在生产质量生命周期的分析,对生产资产或设备做好实时的预测性维修以提高生产的质量,实现最大化产量和可靠性。最终产品以服务的方式在市场上流通,实现供应链配件的优化,售前到售后的服务运营优化,保值分析,以及建立可疑索赔监测等增值的售后服务盈利模式。
智能供应链相对而言技术要求高一些,它应该是建立有高度自动化的分析技术和管理平台上,通过信息技术与运营技术结合形成, 来帮助供应链的厂商从繁琐低效的手动工作中解放出来,实现供应链智能中心。
未来的更智能的供应链除了做好智能的支出分析、物料数据分类等主要功能外,其核心旨在加速发展移动互联网、大数据、云计算、物联网以及相结合的制造业。利用先进数据正析和预测工具,对实时需求预测与分析, 增强商业运营及用户体验,可最大程度地战胜更多的供应链挑战,给所有的供应链厂商提供应对寒冬的“羽绒服”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04