京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与数字化营销
【大数据与数字化营销】据对美公司首席信息官(CIO)的调查发现:仅23%的公司在收集顾客的人口信息和消费习惯之类的数据,并且利用这些数据进行战略决策。但其中却仅有46%的公司拥有数据分析的资源或系统。他们面对的主要挑战在于数据处理、信息管理和数据分析难题。数据管理平台(DMP)发展空间巨大,将是未来数字营销的理想工具。
文章全文:
To Handle Big Data, Advertisers Turn to DMPs
There’s a big to-do about Big Data and data management platforms (DMPs) in the digital advertising space. According to a new eMarketer report, “Data Management Platforms: Using Big Data to Power Marketing Performance,” DMPs enable marketers to use their Big Data to make smarter and more efficient marketing decisions.
Still even as brands use Big Data to build a holistic picture of their potential and real customers, many still find it challenging to extract cross-channel insight from that data.
Ziff Davis found 49% of companies polled worldwide had enacted a data management strategy as of fall 2012. And according to a survey from IT staffing service Robert Half Technology, just 23% of US chief information officers (CIOs) said they were collecting customer data such as demographic information or buying habits. Of that small percentage, less than half (46%) reported having the resources or systems to analyze the information they gathered.
A very general term, Big Data can refer to first-party customer information, third-party audience data, offline purchase data, online advertising behavioral data, campaign analytics and much more.
It can prove challenging to integrate disparate sets of data coming from social media, campaign analytics, offline sources or third parties. In fact, Big Data solution provider Infochimps surveyed IT professionals in North America and found that 83% of respondents said processing such information was a leading Big Data challenge, followed by managing the information (42%) and analyzing the data (41%).
If data is digital marketing’s currency, then the DMP is its bank. Big Data is stored and standardized here so that each data asset can be tied to a particular customer or audience segment. Once standardized, marketers can use that information to power multiple functions, both within digital and across a company’s broader marketing program.
DMPs can house both structured data, typically quantitative in nature, as well as unstructured data, often qualitative in nature—for example, social network data. Once all of these disparate sources are entered, DMPs can standardize them to build a larger, more descriptive picture of a customer or audience base that marketers can act on.
The DMP’s ability to take all of that Big Data from first-, second- and third-party sources and then organize it into meaningful audience segments makes it an ideal tool for audience targeting. This function—particularly for first- and third-party data—was also the top-reported competency of DMPs by US marketing professionals in a September 2012 surveyed by Winterberry Group.
Other than their role in organizing data on customers, DMPs are also a prime tool for campaign measurement, both within digital and across platforms.
“There’s real value in being able to address the audience first to determine what to buy,” said Mark Zagorski, CEO of data provider eXelate. “By looking at your audience and how they’re interacting with a particular ad or promotion, you can take those learnings and feed them into your current efforts and your next campaign.”
The full report, “Data Management Platforms: Using Big Data to Power Marketing Performance” also answers these key questions:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01