
经济学人 新经济、大数据、行为学
美国的金融重心正在从华尔街向硅谷转移,其背后的推手是以高科技与互联网企业为代表的新经济的兴起。新经济带来的不只是对传统商业模式的颠覆,也为经济学引入了全新的思考。微观经济学和行为经济学成为硅谷企业了解消费者、研判趋势、设计未来的利器。
何为新经济?
从基于实物商品的经济转变到基于软件和知识产权的经济。
共享经济,减低信息成本,更简便高效地匹配市场供求。像Airbnb和Etsy这样的新经济网站给人们创造了新的赚钱途径——在自己出外度假时把房子出租,或出售艺术创作和手工艺品。
“组合职业”的兴起,每个人都是自身职业的创业家。新时代的就业者不仅需要不断学习新技能,而且要紧贴时代的经济脉搏,发掘新机遇。
硅谷引领的新经济让微观经济学家如鱼得水。他们精于某个特定领域,通常是某一类型的市场或公司,试图揭示其运转原理。有了科技公司提供的大数据,微观经济学家对人们的行为做出了惊人的准确预测。微观经济学就是数据驱动,挖掘大数据的经济学。硅谷的公司越来越青睐他们:将一位最前沿的经济学家招致麾下,他们就能预测出消费者或者员工下一步可能的动向。
微观经济学家的成功案例比比皆是。以旅游服务公司TripAdvisor的子公司SmarterTravel为例,用户一点开其网站,一项由经济学家设计的算法就开始启动。各种数据,包括两次点击鼠标间隔的时间,都有助于预测该用户究竟是随便看看、打发时间还是潜在的买家。网站会在数毫秒内做出调整——浏览者会看到更多的广告,而买家则会看到一个更为简单的网页,以他们的选购为重点——从而达到利润最大化。其他公司会出售自己的预测能力。任何一家担心员工流失的公司都可以请hiQ Labs的团队通过深入研究公司记录,找出最有可能离职或者被挖走的员工。人力资源总监就可以针对他们做工作。
微观经济学家不再只是研究已有的公司如何运作,而是帮助设计未来的公司。这对经济学家这一职业也提出了新的要求,与着眼华尔街的前人相比,新经济要求经济学家同时驾驭经济学和编程,而不是经济学和交易证券。
微观经济学已开始颠覆经济学研究的出发点和研究方式:
大数据是研究的出发点。微观经济学家非常执着于自己使用的数据是如何收集来的。
假设—求证的研究方法被推倒。微观经济学家更看中电脑对未加工数据的分析,寻求规律。
跨学科的“拿来主义”。为了更好地进行行业分析,微观经济学家博采众长,从心理学到人工智能都有所涉及。
行为经济学,基于人类非理性行为的观察
与微观经济学类似,为了更好去解释人作为个体和群体在日常经济中的行为,经济学的另一重要领域也在快速发展——行为经济学。与经典经济学本质不同之处在于,行为经济学不再把“理性人”作为经济学分析的客观假设,而是把人类行为的不理性纳入到经济学分析当中去。
行为经济学研究的出发点恰恰是对人类非理性行为的观察。我们对意外之财和自己每个月的薪水态度截然不同。自己已经拥有的东西和同等价值可以轻易买到的东西,我们更为珍爱前者。我们对问题的回应很大程度上取决于问题的呈现方式:我们觉得用信用卡支付时加收附加费用不公平,但却认为现金支付的折扣合情合理。
微观经济学家在专注的领域屡有建树,在微观经济层面(即公司和个人行为层面),行为学派也已经站稳脚跟。过去十年,宏观经济学家对整体经济的研判屡屡失误,集合微观经济学的大数据与行为学派的观点,应用于宏观研究,会是很有价值的尝试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07