
经济学人 新经济、大数据、行为学
美国的金融重心正在从华尔街向硅谷转移,其背后的推手是以高科技与互联网企业为代表的新经济的兴起。新经济带来的不只是对传统商业模式的颠覆,也为经济学引入了全新的思考。微观经济学和行为经济学成为硅谷企业了解消费者、研判趋势、设计未来的利器。
何为新经济?
从基于实物商品的经济转变到基于软件和知识产权的经济。
共享经济,减低信息成本,更简便高效地匹配市场供求。像Airbnb和Etsy这样的新经济网站给人们创造了新的赚钱途径——在自己出外度假时把房子出租,或出售艺术创作和手工艺品。
“组合职业”的兴起,每个人都是自身职业的创业家。新时代的就业者不仅需要不断学习新技能,而且要紧贴时代的经济脉搏,发掘新机遇。
硅谷引领的新经济让微观经济学家如鱼得水。他们精于某个特定领域,通常是某一类型的市场或公司,试图揭示其运转原理。有了科技公司提供的大数据,微观经济学家对人们的行为做出了惊人的准确预测。微观经济学就是数据驱动,挖掘大数据的经济学。硅谷的公司越来越青睐他们:将一位最前沿的经济学家招致麾下,他们就能预测出消费者或者员工下一步可能的动向。
微观经济学家的成功案例比比皆是。以旅游服务公司TripAdvisor的子公司SmarterTravel为例,用户一点开其网站,一项由经济学家设计的算法就开始启动。各种数据,包括两次点击鼠标间隔的时间,都有助于预测该用户究竟是随便看看、打发时间还是潜在的买家。网站会在数毫秒内做出调整——浏览者会看到更多的广告,而买家则会看到一个更为简单的网页,以他们的选购为重点——从而达到利润最大化。其他公司会出售自己的预测能力。任何一家担心员工流失的公司都可以请hiQ Labs的团队通过深入研究公司记录,找出最有可能离职或者被挖走的员工。人力资源总监就可以针对他们做工作。
微观经济学家不再只是研究已有的公司如何运作,而是帮助设计未来的公司。这对经济学家这一职业也提出了新的要求,与着眼华尔街的前人相比,新经济要求经济学家同时驾驭经济学和编程,而不是经济学和交易证券。
微观经济学已开始颠覆经济学研究的出发点和研究方式:
大数据是研究的出发点。微观经济学家非常执着于自己使用的数据是如何收集来的。
假设—求证的研究方法被推倒。微观经济学家更看中电脑对未加工数据的分析,寻求规律。
跨学科的“拿来主义”。为了更好地进行行业分析,微观经济学家博采众长,从心理学到人工智能都有所涉及。
行为经济学,基于人类非理性行为的观察
与微观经济学类似,为了更好去解释人作为个体和群体在日常经济中的行为,经济学的另一重要领域也在快速发展——行为经济学。与经典经济学本质不同之处在于,行为经济学不再把“理性人”作为经济学分析的客观假设,而是把人类行为的不理性纳入到经济学分析当中去。
行为经济学研究的出发点恰恰是对人类非理性行为的观察。我们对意外之财和自己每个月的薪水态度截然不同。自己已经拥有的东西和同等价值可以轻易买到的东西,我们更为珍爱前者。我们对问题的回应很大程度上取决于问题的呈现方式:我们觉得用信用卡支付时加收附加费用不公平,但却认为现金支付的折扣合情合理。
微观经济学家在专注的领域屡有建树,在微观经济层面(即公司和个人行为层面),行为学派也已经站稳脚跟。过去十年,宏观经济学家对整体经济的研判屡屡失误,集合微观经济学的大数据与行为学派的观点,应用于宏观研究,会是很有价值的尝试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19