京公网安备 11010802034615号
经营许可证编号:京B2-20210330
经济学人 新经济、大数据、行为学
美国的金融重心正在从华尔街向硅谷转移,其背后的推手是以高科技与互联网企业为代表的新经济的兴起。新经济带来的不只是对传统商业模式的颠覆,也为经济学引入了全新的思考。微观经济学和行为经济学成为硅谷企业了解消费者、研判趋势、设计未来的利器。
何为新经济?
从基于实物商品的经济转变到基于软件和知识产权的经济。
共享经济,减低信息成本,更简便高效地匹配市场供求。像Airbnb和Etsy这样的新经济网站给人们创造了新的赚钱途径——在自己出外度假时把房子出租,或出售艺术创作和手工艺品。
“组合职业”的兴起,每个人都是自身职业的创业家。新时代的就业者不仅需要不断学习新技能,而且要紧贴时代的经济脉搏,发掘新机遇。
硅谷引领的新经济让微观经济学家如鱼得水。他们精于某个特定领域,通常是某一类型的市场或公司,试图揭示其运转原理。有了科技公司提供的大数据,微观经济学家对人们的行为做出了惊人的准确预测。微观经济学就是数据驱动,挖掘大数据的经济学。硅谷的公司越来越青睐他们:将一位最前沿的经济学家招致麾下,他们就能预测出消费者或者员工下一步可能的动向。
微观经济学家的成功案例比比皆是。以旅游服务公司TripAdvisor的子公司SmarterTravel为例,用户一点开其网站,一项由经济学家设计的算法就开始启动。各种数据,包括两次点击鼠标间隔的时间,都有助于预测该用户究竟是随便看看、打发时间还是潜在的买家。网站会在数毫秒内做出调整——浏览者会看到更多的广告,而买家则会看到一个更为简单的网页,以他们的选购为重点——从而达到利润最大化。其他公司会出售自己的预测能力。任何一家担心员工流失的公司都可以请hiQ Labs的团队通过深入研究公司记录,找出最有可能离职或者被挖走的员工。人力资源总监就可以针对他们做工作。
微观经济学家不再只是研究已有的公司如何运作,而是帮助设计未来的公司。这对经济学家这一职业也提出了新的要求,与着眼华尔街的前人相比,新经济要求经济学家同时驾驭经济学和编程,而不是经济学和交易证券。
微观经济学已开始颠覆经济学研究的出发点和研究方式:
大数据是研究的出发点。微观经济学家非常执着于自己使用的数据是如何收集来的。
假设—求证的研究方法被推倒。微观经济学家更看中电脑对未加工数据的分析,寻求规律。
跨学科的“拿来主义”。为了更好地进行行业分析,微观经济学家博采众长,从心理学到人工智能都有所涉及。
行为经济学,基于人类非理性行为的观察
与微观经济学类似,为了更好去解释人作为个体和群体在日常经济中的行为,经济学的另一重要领域也在快速发展——行为经济学。与经典经济学本质不同之处在于,行为经济学不再把“理性人”作为经济学分析的客观假设,而是把人类行为的不理性纳入到经济学分析当中去。
行为经济学研究的出发点恰恰是对人类非理性行为的观察。我们对意外之财和自己每个月的薪水态度截然不同。自己已经拥有的东西和同等价值可以轻易买到的东西,我们更为珍爱前者。我们对问题的回应很大程度上取决于问题的呈现方式:我们觉得用信用卡支付时加收附加费用不公平,但却认为现金支付的折扣合情合理。
微观经济学家在专注的领域屡有建树,在微观经济层面(即公司和个人行为层面),行为学派也已经站稳脚跟。过去十年,宏观经济学家对整体经济的研判屡屡失误,集合微观经济学的大数据与行为学派的观点,应用于宏观研究,会是很有价值的尝试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09